LETTER
Lewis Acid-catalyzed Reductive Etherification
315
+
O
References
Si
O
ISi
Si = silyl group
HSi
(1) Studies on Organosilicon Chemistry. No. 156.
(2) (a) Miura, K.; Hosomi, H. In Lewis Acid Reagents;
R1
R2
R1
R2
ROSi
Yamamoto, H., Ed.; Oxford University Press: Oxford, 1999,
159. (b) Brewster, J. H. In Comprehensive Organic
Synthesis, Vol. 8; Trost, B. M.; Fleming, I., Eds.; Pergamon
Press: Oxford, 1991, 211.
path a
path b
Si
Si
+
O
+
O
Si
OR
Si
H
(3) Reductive etherification by catalytic hydrogenation in
alcoholic acidic media: Verzele, M.; Acke, M.; Anteunis, M.
J. Chem. Soc. 1963, 5598.
R1
R2
R1
R2
3
4
HSi
ROSi
(4) Reductive etherification with alcohols and hydrosilanes:
(a) Doyle, M. P.; DeBruyn, D. J.; Kooistra, D. A. J. Am.
Chem. Soc. 1972, 94, 3659. (b) Loim, N. M.; Parnes, Z. N.;
Vassilyeva, S. P.; Kursanov, D. N. Zh. Org. Khim. 1972, 8,
896. (c) Nicolaou, K. C.; Hwang, C.-K.; Nugiel, D. A. J. Am.
Chem. Soc. 1989, 111, 4136.
+
+
ISi
Si2O
2
Scheme 1
(5) Reductive dimerization of carbonyl compounds with
hydrosilanes: (a) Doyle, M. P.; DeBruyn, D. J.; Donnelly, S.
J.; Kooistra, D. A.; Odubela, A. A.; West, C. T.; Zonnebelt,
S. M. J. Org. Chem. 1974, 39, 2740. (b) Doyle, M. P.;
West, C. T.; Donnelly, S. J.; McOsker, C. C. J. Organomet.
Chem. 1976, 117, 129. (c) Sassaman, M. B.; Prakash, G. K.
S.; Olah, G. A. Tetrahedron 1988, 44, 3771; and ref.6b.
(6) Lewis acid-catalyzed reductive etherification with
alkoxysilanes and hydrosilanes (Lewis acid): (a) Kato, J.;
Iwasawa, N.; Mukaiyama, T. Chem. Lett. 1985, 743;
(Ph3CClO4). (b) Sassaman, M. B.; Kotian, K. D.; Prakash,
G. K. S.; Olah, G. A. J. Org. Chem. 1987, 52, 4314; (TMSI).
(c) Hatakeyama, S.; Mori, H.; Kitano, K.; Yamada, H.;
Nishizawa, M. Tetrahedron Lett. 1994, 35, 4367;
(TMSOTf). (d) Komatsu, N.; Ishida, J.; Suzuki, H.
Tetrahedron Lett. 1997, 38, 7219; (BiBr3).
an alkoxy group introduced into a substrate molecule by
the present reaction are not originated from the same mol-
ecule of 1. Accordingly, the reduction of 3 to 2 may pro-
ceed intermolecularly rather than by the action of an
internal hydride species.
TMSI (0.05 equiv)
SiMe3
(1a (1 equiv))
+
Me2(BuO)Si
O H
BnOSi(OBu)Me2
2a
CH2Cl2
0 °C to rt, 2 h
5
Ph
4'
H
Scheme 2
(7) Miura, K.; Nakagawa, T.; Suda, S.; Hosomi, A. Chem. Lett.
2000, 150.
(8) Review on tandem reactions: Tietze, L. F. Chem. Rev. 1996,
96, 115.
TMSI (0.05 equiv)
+
+
HexOSiDMe2
PhCHO
BuOSiHMe2
CH2Cl2, 0 °C to rt, 2 h
1a
1e
(9) Miura, K.; Ootsuka, K.; Suda, S.; Nishikori, H.; Hosomi, A.
Synlett 2001, 1617.
PhCHO : 1a : 1e = 1 : 0.55 : 0.55
+
+
+
PhCHDOHex
(10) Alkoxydimethylsilanes 1 were prepared from alcohols,
chlorodimethylsilane, and triethylamine (50–60% yield) or
from alcohols and(diethylamino)dimethylsilane (50–70%
yield).
PhCH2OBu
PhCHDOBu
PhCH2OHex
1 : 1 : 1 : 1
Scheme 3
(11) For the formation of dibenzyl ether (reductive dimerization),
see ref.5c and ref.6b
In summary, we have demonstrated that alkoxydimethyl-
silanes 1 work as bifunctional silicon reagents to enable
the Lewis acid-catalyzed reductive etherification of alde-
hydes and ketones. The present reaction is superior to the
conventional method using two kinds of silicon reagents
in terms of atom efficiency and ease of operation.
(12) General Procedure for the TMSI-catalyzed Reductive
Etherification (Method A): To a solution of 1 (1.10 mmol)
and a carbonyl compound (1.00 mmol) in CH2Cl2 (1.0 mL)
at 0 °C was added TMSI (1.0 M in CH2Cl2, 0.05 mL, 0.05
mmol). The mixture was stirred for 10 min and warmed to
r.t. After a given reaction time, the reaction mixture was
poured into water (20 mL) and extracted with t-BuOMe (3
10 mL). The combined organic layer was dried over Na2SO4
and evaporated. The residual oil was purified by silica gel
column chromatography.
Acknowledgement
This work was partly supported by CREST, Science and Technolo-
gy Corporation (JST). We thank Dow Corning Toray Silicone Co.
Ltd. and Shin-Etsu Chemical Co. Ltd. for a gift of organosilicon
compounds.
Synlett 2002, No. 2, 313–315 ISSN 0936-5214 © Thieme Stuttgart · New York