154
T. Shibata et al.
LETTER
(7) Non-dehydrative ether syntheses of propargyl alcohols
PtCl2 (4 mol%)
OH
Ph
R
Ph
R
catalyzed by transition metal complexes: (a) Nishibayashi,
Y.; Wakiji, I.; Hidai, M. J. Am. Chem. Soc. 2000, 122,
11019. (b) Sherry, B. D.; Radosevich, A. T.; Toste, F. D. J.
Am. Chem. Soc. 2003, 125, 6076.
AgSbF6 (10 mol%)
O
Ph
R
DCE, r.t. to 40 °C
R= Me: 83% (dl/meso = 2.3/1)
(8) Recent examples using platinum salt as Lewis acid
catalysts: (a) Hartman, J. W.; Sperry, L. Tetrahedron Lett.
2004, 45, 3787. (b) Marion, F.; Coulomb, J.; Courillon, C.;
Fensterbank, L.; Malacria, M. Org. Lett. 2004, 6, 1509.
(c) Shimada, T.; Nakamura, I.; Yamamoto, Y. J. Am. Chem.
Soc. 2004, 126, 10546. (d) Nevado, C.; Ferrer, C.;
Echavarren, A. M. Org. Lett. 2004, 6, 3191. (e) Qian, H.;
Han, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126,
9536.
R= 1-propynyl: 85% (dl/meso = 1/1))
Equation 1
In summary, we developed a cationic platinum-catalyzed
ether synthesis from alcohols. Catalytic intra- and inter-
molecular dehydration gave various cyclic and acyclic
ethers. Moreover, the platinum catalyst is moisture-toler-
ant and the etherifications efficiently proceeded even
under an atmosphere of air.
(9) All of the 2,n-disubstituted cyclic ethers were obtained as a
mixture of dl and meso isomers (ca. 1:1).
(10) Typical Experimental Procedure for Cyclic Ethers from
Diols (Table 2): PtCl2 (1.1 mg, 0.004 mmol) was placed in
a flask and a 1,2-dichloroethane solution (2.0 mL) of a diol
(0.20 mmol, 0.10 M) was added. To the resulting mixture
was added AgSbF6 (3.6 mg, 0.010 mmol) and the mixture
was stirred at the temperature cited in Table 2 for 0.5–8 h.
After excluding the solvent to the volume of ca. 0.5 mL
under reduced pressure, the obtained mixture was purified
by column chromatography (hexane–EtOAc) using silica gel
to give a pure cyclic ether.
Acknowledgment
This research was supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports, Science
and Technology, Japan.
References
(11) 2-Methyl-2-(3-phenylpropyl)tetrahydrofuran: IR (neat):
1496, 1454, 1057, 748, 700 cm–1. 1H NMR (400 MHz,
CDCl3): d = 1.16 (s, 3 H), 1.51–1.74 (m, 6 H), 1.82–1.95 (m,
2 H), 2.59–2.66 (m, 2 H), 3.74–3.85 (m, 2 H), 7.17–7.29 (m,
5 H). 13C NMR (100 MHz, CDCl3): d = 25.8, 26.1, 26.7,
36.5, 36.7, 40.9, 67.1, 82.5, 125.6, 128.1, 128.3, 142.5.
HRMS (FAB): m/z calcd for C14H20O [M+]: 204.1514.
Found: 204.1508.
(12) Typical Experimental Procedure for Acyclic Ethers
(Table 3): PtCl2 (3.2 mg, 0.012 mmol) was placed in a flask
and a 1,2-dichloroethane solution (4.5 mL) of an alcohol
(0.30 mmol) and allyl alcohol (0.60 mmol) was added. To
the resulting mixture was added AgSbF6 (10.3 mg, 0.030
mmol) and the mixture was stirred at the temperature cited
in Table 3 for 1–2 h. The following procedure is the same as
in ref. 10.
(1) (a) Feuer, H.; Hooz, J. In The Chemistry of the Ether
Linkage; Patai, S., Ed.; John Wiley and Sons: London, 1967,
Chap. 10, 445. (b) Baggett, N. In Comprehensive Organic
Chemistry, Vol. 1; Barton, D.; Ollis, W. D., Eds.; Pergamon
Press: Oxford, 1979, 799.
(2) Molnár, A.; Felföldi, K.; Bartók, M. Tetrahedron 1981, 37,
2149.
(3) Scott, L. T.; Naples, J. O. Synthesis 1973, 209.
(4) Olah, G. A.; Fung, A. P.; Malhorta, R. Synthesis 1981, 474.
(5) Kim, S.; Chung, K. N.; Yang, S. J. Org. Chem. 1987, 52,
3917.
(6) (a) Zhu, Z.; Espenson, J. H. J. Org. Chem. 1996, 61, 324.
(b) Salehi, P.; Iranpoor, N.; Behbahani, F. K. Tetrahedron
1998, 54, 943. (c) Sharma, G. V. M.; Mahalingam, A. K. J.
Org. Chem. 1999, 64, 8943. (d) Ooi, T.; Ichikawa, H.;
Itagaki, Y.; Maruoka, K. Heterocycles 2000, 52, 575.
(e) Bouquillon, S.; Hénin, F.; Muzart, J. Organometallics
2000, 19, 1434. (f) Kawada, A.; Yasuda, K.; Abe, H.;
Harayama, T. Chem. Pharm. Bull. 2002, 50, 380.
(g) Miller, K. J.; Abu-Omar, M. M. Eur. J. Org. Chem. 2003,
1294. (h) Noji, M.; Ohno, T.; Fuji, K.; Futaba, N.; Tajima,
H.; Ishii, K. J. Org. Chem. 2003, 68, 9340. (i) Kayaki, Y.;
Koda, T.; Ikariya, T. J. Org. Chem. 2004, 69, 2595.
(13) Complete racemization of a chiral alcohol indicates that the
present etherification proceeded via SN1 pathway
(Scheme 1).
Scheme 1
Synlett 2005, No. 1, 152–154 © Thieme Stuttgart · New York