5138
J. Am. Chem. Soc. 1996, 118, 5138-5139
Scheme 1
Novel Radical Reaction of Phenylsulfonyl Oxime
Ethers. A Free Radical Acylation Approach
Sunggak Kim,* Ill Young Lee, Joo-Yong Yoon, and
Dong Hyun Oh
Department of Chemistry
Korea AdVanced Institute of Science and Technology
Taejon 305-701, Korea
ReceiVed January 12, 1996
Although acylation represents one of the most useful and
thoroughly studied reactions in organic chemistry,1 a successful
free radical-mediated acylation is not presently available. Only
a few examples, involving highly activated carbonyls such as
biacetyl2 and acyl aldoximes,3 have appeared to date.4 It is also
noteworthy that free radical carbonylation has recently been
reported.5 This reaction allows the introdution of carbonyl
groups to organic halides.
strengths of CdO bonds.10 Thus, a fundamentally new acylation
approach was sought, and we now report a conceptually simple
solution to this problem, wherein an oxime ether 4 can be used
as a carbonyl equivalent radical acceptor in addition reactions
of alkyl radicals. This concept is based on the fact that alkyl
radicals undergo facile additions to CdN bonds such as oxime
ethers11,12 and hydrazones.13 As shown in Scheme 1, our
approach involves additions of alkyl radicals to CdN bonds
and subsequent â-exclusion of phenyl thio radicals which react
with bis(trialkyl)tin to propagate a chain. However, initial
attempts to employ this strategy were disappointing, since the
use of 4a under the similar conditions afforded 5a in 20%
yield,14 whereas the use of 4b afforded only a small amount of
5b (<5%).
In order to examine the feasibility of radical-mediated
acylation reactions, we began our study with thiol esters as
radical acceptors (eq 1).6,7 When 4-phenoxybutyl iodide 1 was
We next examined phenylsulfonyl oxime ethers since the
phenylsulfonyl group would be expected to lower the energy
of the LUMO of a radical acceptor, thereby increasing the rate
of addition of alkyl radicals to 4c and 4d by reducing the
SOMO-LUMO difference.15 As predicted, the phenylsulfonyl
oxime ethers 4c and 4d appeared to be highly effective and
synthetically useful reagents for radical-mediated acylations
under mild conditions. Reagents 4c and 4d were prepared by
MCPBA oxidation of 4a and 4b, respectively, and obtained as
stable crystalline solids.16 When 1 was treated with Bu3SnSnBu3
(1.2 equiv), 4c (2.0 equiv), and acetone (5 equiv) as a sensitizer
in benzene (0.3 M in iodide) at 300 nm for 4 h, O-benzyl
aldoxime 5a was obtained in 94% yield. This product was
hydrolyzed to aldehyde 3a in 90% yield using a 30% HCHO
solution in THF (1:3) in the presence of a catalytic amount of
irradiated in the presence of S-phenyl thioformate 2a and bis-
(tributyltin) (1.2 equiv) in benzene (0.2M in iodide) using
Neumann’s method,8 aldehyde 3a was obtained in 15% yield.9
The use of S-phenyl thioacetate 2b did not give 3b, but the
selenol ester 2c gave 3b in 18% yield. We conceived that the
unsuccessful outcome might be due to the reversibility of the
additions of alkyl radicals to CdO bonds and the higher π bond
(1) (a) O’Neill, B. T. In ComprehensiVe Organic Synthesis; Trost, B.
M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 1, Chapter
1.13. (b) Davis, B. R.; Garratt, P. J. In ComprehensiVe Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 2,
Chapter 3.6.
(2) (a) Bentrude, W. G.; Darnall, K. R. J. Am. Chem. Soc. 1968, 90,
3588. (b) Oyama, M. J. Org. Chem. 1965, 30, 2429. (c) Minisci, F.; Galli,
R.; Cecere, M.; Malatesta, V.; Caronna, T. Tetrahedron Lett. 1968, 5609.
(3) Citterio, A.; Filippini, L. Synthesis 1986, 473. Homolytic C-alkylation
of unactivated aldoximes such as acetaldoxime and phenylaldoxime gave
ketoximes in very low yield (<20%).
(4) Indirect approaches for formylation include additions of alkyl radicals
to isonitriles and sulfonyl cyanides. (a) Stork, G.; Sher, P. M. J. Am. Chem.
Soc. 1983, 105, 6765. (b) Barton, D. H. R.; Ozbalik, N.; Vacher, B.
Tetrahedron 1988, 44, 3501. (c) Fang, J.-M.; Chen, M.-Y. Tetrahedron
Lett. 1987, 28, 2853. (d) Barton, D. H. R.; Jaszberenyi, J. C.; Theodorakis,
E. A. Tetrahedron Lett. 1991, 32, 3321. (e) Leopez, J. C.; Gomez, A. M.;
Fraser-Reid, B. J. Org. Chem. 1995, 60, 3871.
(5) (a) Ryu, I.; Kusano, K.; Ogawa, A.; Kambe, N.; Sonoda, N. J. Am.
Chem. Soc. 1990, 112, 1295. (b) Ryu, I.; Kusano, K.; Masumi, N.;
Yamazaki, H.; Ogawa, A.; Sonoda, N. Tetrahedron Lett. 1990, 31, 6887.
(c) Ryu, I.; Kusano, K.; Yamazaki, H.; Sonoda, N. J. Org. Chem. 1991,
56, 5003. (d) Ryu, I.; Yamazaki, H.; Kusano, K.; Ogawa, A.; Sonoda, N.
J. Am. Chem. Soc. 1991, 113, 8558. (e) Ryu, I.; Yamazaki, H.; Ogawa, A.;
Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1993, 115, 1187.
(6) (a) Scott, A. I.; Kang, K. J. Am. Chem. Soc. 1977, 99, 1997. (b)
Wollowitz, S.; Halpern, J. J. Am. Chem. Soc. 1984, 106, 8319. (c) Wollowitz,
S.; Halpern, J. J. Am. Chem. Soc. 1988, 110, 3112. (d) Dowd, P.; Wilk, B.;
Wilk, B. K. J. Am. Chem. Soc. 1992, 114, 7949.
(7) For selected examples on the use of thiol esters and selenol esters as
precursors of acyl radicals, see: (a) Pfenninger, J.; Heuberger, C.; Graf,
W. HelV. Chim. Acta 1980, 63, 2328. (b) Boger, D. L.; Mathvink, R. J. J.
Org. Chem. 1988, 53, 3377. (c) Boger, D. L.; Mathvink, R. L. J. Am. Chem.
Soc. 1990, 112, 4003. (d) Boger, D. L.; Mathvink, R. L. J. Am. Chem. Soc.
1990, 112, 4008. (e) Curran, D. P.; Liu, H. J. Org. Chem. 1991, 56, 3463.
(f) Batty, D.; Crich, D. Tetrahedron Lett. 1992, 33, 875. (g) Evans, P. A.;
Roseman, J. D. Tetrahedron Lett. 1995, 36, 31. (h) Chatgilialoglu, C.;
Lucarini, M. Tetrahedron Lett. 1995, 36, 1299.
(8) Harendza, M.; Junggebauer, J.; Lebmann, K.; Neuman, W. P.; Tews,
H. Synlett 1993, 286.
(9) In addition to 3a, S-phenyl 4-phenoxypentanethioate (6%) was
isolated along with recovery of 2a (40%).
(10) (a) Beckwith, A. L. J.; Hay, B. P. J. Am. Chem. Soc. 1989, 111,
230. (b) Beckwith, A. L. J.; Hay, B. P. J. Am. Chem. Soc. 1989, 111, 2674.
(c) Walton, R.; Fraser- Reid, B. J. Am. Chem. Soc. 1991, 113, 5791. (d)
Beckwith, A. L. J.; Raner, K. D. J. Org. Chem. 1992, 57, 4954.
(11) (a) Corey, E. J.; Pyne, S. G. Tetrahedron Lett. 1983, 24, 2821. (b)
Hart, D. J.; Seely, F. L. J. Am. Chem. Soc. 1988, 110, 1631. (c) Bartlett, P.
A.; Mclaren, K. L.; Ting, P. C. J. Am. Chem. Soc. 1988, 110, 1633. (d)
Parker, K. A.; Spero, D. M.; Epp, J. V. J. Org. Chem. 1988, 53, 4628. (e)
Enholm, E. J.; Burroff, J. A.; Jaramillo, L. M. Tetrahedron Lett. 1990, 31,
3727. (f) Booth, S. E.; Jenkins, P. R.; Swain, C. J. J. Chem. Soc., Chem.
Commun. 1991, 1248. (g) Barton, D. H. R.; Dalko, P. I.; Gero, S. D.
Tetrahedron Lett. 1991, 32, 4713. (h) Hatem, J.; Henriet-Bernard, C.;
Grimaldi, J.; Maurin, R. Tetrahedron Lett. 1992, 33, 1057. (i) Contelles, J.
M.; Ruiz, P.; Sanchez, B.; Jimeno, M. L. Tetrahedron Lett. 1992, 33, 5261.
(j) Hart, D. J.; Krishnamurthy, R.; Pook, L. M.; Seely, F. L. Tetrahedron
Lett. 1993, 34, 7819. (k) Naito, T.; Tajiri, K.; Harimoto, T.; Ninomiya, I.;
Kiguchi, T. Tetrahedron Lett. 1994, 35, 2205. (l) Kiguchi, T.; Tajiri, K.;
Ninomiya, I.; Naito, T.; Hiramatsu, H. Tetrahedron Lett. 1995, 36, 253.
(12) According to our kinetic and competition studies on the rate constant
for 5- exo and 6-exo cyclization of primary alkyl radicals to the O-benzyl
oxime ethers, CdN bonds in oxime ethers seem to be much better radical
acceptors than CdC and CdO bonds. Kim, Y. J. Unpublished results.
(13) (a) Kim, S.; Kee, I. S.; Lee, S. J. Am. Chem. Soc. 1991, 113, 9882.
(b) Kim, S.; Kee, I. S. Tetahedron Lett. 1993, 34, 4213. (c) Kim, S.; Cheong,
J. H.; Yoon, K. S. Tetrahedron Lett. 1995, 36, 6069. (d) Sturino, C. F.;
Fallis, A. G. J. Am. Chem. Soc. 1994, 116, 7447. (e) Sturino, C. F.; Fallis,
A. G. J. Org. Chem. 1994, 59, 6514.
(14) The use of the hydrazone (HC(SPh)dNNMe2) gave PhO(CH2)4-
CHdNNMe2 in 26% yield.
(15) (a) Giese, B. Radicals in Organic Synthesis: Formation of Carbon-
Carbon Bonds; Pergamon Press: New York, 1986; Chapter 2. (b) Fleming,
I. Frontier Orbitals and Organic Chemical Reactions; John Wiley &
Sons: London, 1976; Chapter 4 and 5.
S0002-7863(96)00099-6 CCC: $12.00 © 1996 American Chemical Society