a new cerebroside was isolated from the latex of Euphorbia
characias L., and its structure was elucidated a decade back.6
R-Galactosyl ceramide (KRN 7000) 2, a potent analogue of the
natural agelasphins isolated from the marine sponge Agelas
mauritianus,7 is an important cerebroside exhibiting immuno-
stimulatory activity and antitumor properties. It contains a
R-linked D-galactose with phytosphingosine8-derived ceramide.
Some reports have revealed that 2 is not only a ligand to bind
with CD1d molecule and activate natural killer T-cells (NKT
cells) to suppress tumor metastases9 but also a potential agent
A Concise Synthesis of Tetrahydroxy-LCB,
r-Galactosyl Ceramide, and
1,4-Dideoxy-1,4-imino-L-ribitol via D-Allosamines
as Key Building Blocks
Shun-Yuan Luo,† Suvarn S. Kulkarni,‡ Chien-Hung Chou,‡
Wei-Meen Liao,§ and Shang-Cheng Hung*,†,‡
Department of Chemistry, National Tsing Hua UniVersity,
Hsinchu 300, Taiwan, Genomics Research Center and Institute
of Chemistry, Academia Sinica, Taipei 115, Taiwan, and
Department of Chemistry, National Central UniVersity,
Chungli 320, Taiwan
to prevent autoimmune diseases such as type I diabetes.10
A
few syntheses of 211 and its derivatives12 have been documented
in the literature so far. Recently, a C-glycoside analogue of KRN
7000 was synthesized and shown to exhibit remarkably en-
hanced activity.13 Iminocyclitols is yet another interesting class
of biomolecules. A number of polyhydroxylated piperidines and
pyrrolidines, both natural and synthetic, have come up over the
past two decades as useful potent glycosidase inhibitors. These
are analogues of pyranoses or furanoses with the ring oxygen
replaced by an imino group and the anomeric hydroxyl group
replaced by hydrogen. Some representatives of iminocyclitols
are already marketed as pharmaceuticals and are used in
treatment of a certain kind of diabetes, while quite a few others
have promising therapeutic potential as antibacterial, anticancer,
and antiviral agents.14 The discovery that certain iminocyclitols
inhibit glycoprotein processing and thereby possess anti-HIV
activity stimulated interest in this area, and not surprisingly they
ReceiVed July 21, 2005
(6) Falsone, G.; Cateni, F.; Katusian, F. Z. Naturforsch. B. 1993, 48,
1121-1126.
(7) Natori, T.; Morita, M.; Akimoto, K.; Koezuka, Y. Tetrahedron 1994,
50, 2771-2784.
(8) Synthesis of phytosphingosine: (a) Howell, A. R.; Ndakala, A. J.
Curr. Org. Chem. 2002, 6, 365-391 and references therein. (b) Luo, S.-
Y.; Thopate, S. R.; Hsu, C.-Y.; Hung, S.-C. Tetrahedron Lett. 2002, 43,
4889-4892. (c) Chiu, H.-Y.; Tzou, D.-L. M.; Patkar, L. N.; Lin, C.-C. J.
Org. Chem. 2003, 68, 5788-5791. (d) Naidu, S. V.; Kumar, P. Tetrahedron
Lett. 2003, 44, 1035-1037.
(9) (a) Kawano, T.; Cui, J.; Koezuka, Y.; Toura, I.; Kaneko, Y.; Motoki,
K.; Ueno, H.; Nakagawa, R.; Sato, H.; Kondo, E.; Koseki, H.; Taniguchi,
M. Science 1997, 278, 1626-1629. (b) Matsuda, J. L.; Kronenberg, M. J.
Curr. Opin. Immunol. 2001, 13, 19-25. (c) Kaer, L. V. Nat. ReV. Immunol.
2005, 5, 31-42.
(10) (a) Hong, S.; Wilson, M. T.; Serizawa, I.; Wu, L.; Nagendra, S.;
Naidenko, O.; Miura, T.; Haba, T.; Scherer, D. C.; Wie, J.; Kronenberg,
M.; Koezuka, Y.; van Kaer, L. Nat. Med. 2001, 7, 1052-1056. (b) Sharif,
S.; Arreaza, G. A.; Zucker, P.; Mi, Q.-S.; Sondhi, J.; Naidenko, O. V.;
Kronenberg, M.; Koezuka, Y.; Delovitch, T. L. Nat. Med. 2001, 7, 1057-
1062.
The total syntheses of tetrahydroxy-LCB 1, R-galactosyl
ceramide 2, and 1,4-dideoxy-1,4-imino-L-ribitol 3 via D-
allosamine derivatives as common synthons are described
here.
Lipids and glycolipids play significant roles in numerous
biological processes.1 For example, a number of 2-amino-
1,3,4,5-tetrahydroxyoctadecene derivatives have been isolated
from bovine spinal cords,2 human brains,2 and green3 as well
as red algae.4 Of these, (2S,3S,4R,5R,6Z)-2-amino-1,3,4,5-
tetrahydroxyoctadecene 1,5 the long chain base (LCB) part of
(11) (a) Morita, M.; Motoki, K.; Akimoto, K.; Natori, T.; Sakai, T.; Sawa,
E.; Yamaji, K.; Kobayashi, E.; Fukushima, H.; Koezuka, Y. J. Med. Chem.
1995, 38, 2176-2187. (b) Morita, M.; Natori, T.; Akimoto, K.; Osawa, T.;
Fukushima, H.; Koezuka, Y. Bioorg. Med. Chem. Lett. 1995, 5, 699-704.
(c) Takikawa, H.; Muto, S.-E.; Mori, K. Tetrahedron 1998, 54, 3141-
3150. (d) Nakagawa, R.; Motoki, K.; Ueno, H.; Iijima, R.; Nakamura, H.;
Kobayashi, E.; Shimosaka, A.; Koezuka, Y. Cancer Res. 1998, 58, 1202-
1207. (e) Figueroa-Pe´rez, S.; Schmidt, R. R. Carbohydr. Res. 2000, 328,
95-102. (f) Plettenburg, O.; Bodmer-Narkevitch, V.; Wong, C.-H. J. Org.
Chem. 2002, 67, 4559-4564. (g) Du, W.; Gervay-Hague, J. Org. Lett. 2005,
7, 2063-2065.
† National Tsing Hua University.
‡ Academia Sinica.
§ National Central University.
(1) (a) Synthesis in Lipid Chemistry; Tyman, J. H. P., Ed.; Royal Society
of Chemistry, Special Publications: Cambridge, 1994. (b) Kolter, T.;
Sandhoff, K. Angew. Chem., Int. Ed. 1999, 38, 1532-1568.
(2) Prosˇtenik, M.; CÄ osovic´, Cˇ .; Gospocˇic´, L.; Jandric´, Z.; Ondrusˇek, V.
Rad. Jugosl. Akad. Znan. Umjet., Kem. 1984, 407, 5-12.
(3) Garg, H. S.; Sharma, M.; Bhakuni, D. S.; Pramanik, B. N.; Bose, A.
K. Tetrahedron Lett. 1997, 33, 1641-1644.
(4) Rao, Ch. B.; Satyanarayana, Ch. Indian J. Chem. 1994, 33B, 97.
(5) Synthesis: (a) Li, Y.-L.; Wu, Y.-L. Tetrahedron Lett. 1995, 36,
3875-3876. (b) Yoda, H.; Oguchi, T.; Takabe, K. Tetrahedron Asymmetry
1996, 7, 2113-2116. (c) Shimizu, M.; Kawamoto, M.; Niwa, Y. Chem.
Commun. 1999, 1151-1152.
(12) (a) Sakai, T.; Naidenko, O. V.; Iijima, H.; Kronenberg, M.; Koezuka,
Y. J. Med. Chem. 1995, 38, 1836-1841. (b) Sakai, T.; Ehara, H.; Koezuka,
Y. Org. Lett. 1999, 1, 359-361.
(13) Yang, G.; Schmieg, J.; Tsuji, M.; Franck, R. W. Angew. Chem.,
Int. Ed. 2004, 43, 3818-3822.
10.1021/jo051518u CCC: $33.50 © 2006 American Chemical Society
Published on Web 01/04/2006
1226
J. Org. Chem. 2006, 71, 1226-1229