3
Tetrahedron Letters
Seliga, C. J.; Pierson, E. E.; Pierson, L. S.; VanEtten, H. D.; Gunatilaka,
A. A. L. J. Antibiot. 2004, 57, 341.
5. (a) Thirupathi, B.; Gundapaneni, R. R.; Mohapatra, D. K. Synlett 2011,
2667; (b) Yadav, J. S.; Shiva Shankar, K.; Reddy, A. S.; Subba Reddy,
B. V. Tetrahedron Lett. 2012, 53, 6380.
6. Kamila, S.; Mukherjee, C.; Mondal, S. S.; De, A. Tetrahedron 2003, 59,
1339.
7. Brimble, M. A.; Flowers, C. L.; Hutchinson, J. K.; Robinson, J. E.;
Sidford, M. Tetrahedron 2005, 61, 10036
8. See supporting information for detail experimental procedures.
Reagents and conditions: (a) Ag2O, PMBBr, CH2Cl2, reflux, 12 h. (b)
i) DIBAL-H, CH2Cl2, 0 oC to rt, 2 h; ii) Ph3P=CHCO2Me, benzene,
reflux, 2 h, 57% over two steps; (c) LAH, THF, 0 oC to rt, 2 h, 60%.
9. (a) Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Shoji, M. Tetrahedron Lett.
2003, 44, 8293; (b) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Shoji, M.
Angew. Chem. Int. Ed. 2004, 43, 1112.
Scheme 4: Synthesis of 2; reagents and conditions: (a) (i)
(COCl)2, DMSO, Et3N, CH2Cl2, −78 °C, 2 h; (ii) PhNO, L-
proline, CH3CN, −20 °C, 24 h then NaBH4, MeOH, 0 °C; (iii)
10% Pd/C, H2, EtOAc, 12 h, 77% overall; (b) PhCH(OMe)2,
CH2Cl2, PTSA (cat.), rt, 6 h, 86%; (c) DIBAL-H, CH2Cl2, 0 °C
to rt, 2 h, 74%; (d) (i) PPh3, imidazole, I2, THF, 0 °Crt, 1 h; (ii)
vinylmagnesium bromide, CuI, dry THF, −40 °C, 5 h, 50% over
two steps; (e) DDQ, CH2Cl2:H2O (15:1), 0 °C, 1 h, 83%; (f) 4,
DEAD, Ph3P, toluene, 0 °C to rt, 12 h, 71%; (g) Grubbs’ second
generation catalyst, CH2Cl2, reflux, 12 h, 68%; (h) Pd/C, H2,
EtOAc, rt., 2 h, 84%; (i) BBr3, CH2Cl2, −78 °C to rt, 1.5 h, 76%.
10. Nunomoto, S.; Kawakami, Y.; Yamashita, Y. J. Org. Chem. 1983, 48,
1912.
11. (a) Mitsunobu, O. Synthesis 1981, 1, 1; (b) Swamy, K. C.; Kumar, N. N.;
Balaraman, E.; Kumar, K. V. Chemical Reviews 2009, 109, 2551.
12. (a) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1,
953; (b) Love, J. A.; Sanford, M. S.; Day, M. W.; Grubbs, R. H. J. Am.
Chem. Soc. 2003, 125, 1013.
13. Synthesis of (3R,5R)-sonnerlactone (1): To a solution of lactone 17 (60
mg, 0.16 mmol) in dry CH2Cl2 (0.5 mL), boron tribromide (3.15 mL, 1 M
in CH2Cl2, 3.2 mmol) was added dropwise under nitrogen atmosphere at
−78 °C. The resulting dark brown solution was allowed to stir at room
temperature for 1 h. After complete conversion (monitored by TLC), the
mixture was again cooled to −78 °C and quenched with methanol (1 mL).
The brown mixture was concentrated in vacuum to get a crude material
which was purified by column chromatography (60-120 silica gel, ethyl
In conclusion, total synthesis of (3R,5R)-sonnerlactone (1) and
(3R,5S)-sonnerlactone (2) have been accomplished in 6.8% and
7.6% overall yields respectively starting from commercially
available materials. In our approach, crucial aliphatic segments
were synthesized in an efficient manner using a proline catalysed
-aminooxylation reaction of aldehyde. Macrocyclic core of the
target molecule with suitable stereochemistry has been accessed
through Mitsunobu reaction and ring-closing metathesis (RCM)
protocol.
acetate/hexane = 2:3) to obtain compound 1 (39 mg, 82%) as a white
25
solid. Mp: 145–147 oC (lit.4 mp 146–147 oC). []D
= + 8.3 (c 0.9,
EtOH), (lit.1 []D = +9.0 (c 1, EtOH); IR (neat): 3504, 3423, 3179,
2941, 1657, 1609, 1458, 1391, 1318, 1264, 1207, 1165, 830, 764 cm–¹;
1H NMR (acetone–d6, 500 MHz) δ 11.03 (br s, 1H), 9.30 (br s, 1H), 6.29
(d, 1H, J = 2.3 Hz), 6.24 (d, 1H, J = 2.3 Hz), 5.01–4.93 (m, 1H), 3.88–
3.82 (m, 1H), 3.23 (dt, 1H, J = 13.4, 7.2 Hz), 2.57 (ddd, 1H, J = 13.4,
8.2, 6.0 Hz), 2.10– 2.06 (m, 1H), 2.03–2.01 (m, 2H), 1.82–1.76 (m, 1H),
1.57–1.51 (m, 1H), 1.42 (3H, d, J = 6.2 Hz), 1.35–1.26 (m, 1H); 13C
NMR (acetone–d6, 75 MHz,) δ 171.8, 163.4, 163.1, 149.4, 111.8, 106.2,
25
Acknowledgments
CS thanks JNTU for constant encouragement during this
research program. SJ acknowledges the financial support of DST,
Govt. of India (Ref No: SB/FT/CS-049/2013). SJ is also grateful
to KIIT University for providing basic research facility.
101.7, 73.2, 71.9, 45.8, 37.5, 37.0, 27.0, 21.5; HRMS (ESI) calculated for
C14H18O5 [M + H]+: 267.1227, found: 267.1221.
14. For examples of enantioselective reactions see: (a) Dong, K.; Li, Y.;
Wang, Z.; Ding, K. Angew. Chem. Int. Ed. 2013, 52, 14191; (b) Zhang,
P.; Han, Z.; Wang, Z.; Ding, K..Angew. Chem. Int. Ed. 2013, 52, 11054;
(d) Guo, S.; Liu, J.; Ma, D. Angew. Chem. Int. Ed. 2015, 54, 1298; (e)
J.; Yu, B. Angew. Chem. Int. Ed. 2015, 54, 6618; (h) Nie, S.; Li, W.; Yu,
Xie, Z.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 7851; (k) Xu, H.; Qu, J-
P.; Liao, S.; Xiong, S.;Tang, Y. Angew. Chem. Int. Ed. 2013, 52, 4004;
J. Am. Chem. Soc. 2011, 133, 19006.
References and notes
1. Li, K. K.; Lu, Y. J.; Song, X. H.; She, Z. G.; Wu, X. W.; An, L. K.; Ye,
C. X.; Lin, Y. C. Bioorg. Med. Chem. Lett., 2010, 20, 3326.
2. (a) Edrada, R. A.; Heubes, M.; Brauers, G.; Wray, V.; Berg, A.; Grafe,
U.; Wohlfarth, M.; Muhlbacher, J.; Schaumann, K.; Sudarsono, K.;
Bringmann, G.; Proksch, P. J. Nat. Prod., 2002, 65, 1598; (b) Lai, S.;
Shizuri, Y.; Yamamura, S.; Kawai, K.; Furukawa, H. Bull. Chem. Soc.
Jpn. 1991, 64, 1048; (c) Sponga, F.; Cavaletti, L.; Lazzarini, A.; Borghi,
A.; Ciciliato, I.; Losi, D.; Marinelli, F. J. Biotechnol,. 1999, 70, 65; (d)
Huang, Z.; Cai, X.; Shao, C.; She, Z.; Xia, X.; Chen, Y.; Yang, J.; Zhou,
S.; Lin, Y. Phytochem,. 2008, 69, 1604.
3. (a) Musgrave, O. C.; J. Chem. Soc. 1956, 4301; (b) Lai, S.; Shizuri, Y.;
Yamamura, S.; Kawai, K.; Terada, Y.; Furukuwa, H. Tetrahedron Lett.
1989, 30, 2241; (c) Robeson, D. J.; Strobel, G. A.; Strange, R. N. J. Nat.
Prod. 1985, 48, 139; (d) Ghisalberti, E. L.; Rowland, C. Y. J. Nat. Prod.
1993, 56, 2175.
Supplementary Material
Supplementary material associated with this article is
available
online
at
4. (a) He, J.; Wijeratne, E. M. K.; Bashyal, B. P.; Zhan, J.; Seliga, C. J.;
Liu, M. X.; Pierson, E. E.; Pierson, L. S.; VanEtten, H. D.; Gunatilaka,
A. A. L. J. Nat. Prod. 1985, 67, 2004; (b) Zhan, J., E.; Wijeratne, M. K.;