10.1002/chem.201605955
Chemistry - A European Journal
catalyst.10 The reaction of 13 with MEDAM amine 4a and ethyl
diazoacetate 6 with 5 mol% (S)-VAPOL catalyst gave the
ethylene diaziridine 14 as a 95:5 mixture of syn- and anti-
diastereomers in 95% yield. The anti-diastereomer 15 is
preferentially generated with the catalyst prepared from (R)-
VAPOL in 74% yield with a 96:4 selectivity. This is not quite as
high a selectivity as observed with the a,b-aziridinyl aldehyde 5j
(Table 3, entries 5 and 6) which suggests that the steric bulk in
subsequent to reduction which gave the β-amino esters 15 and
16 in good yields and as single diastereomers and enantiomers.
In conclusion, we have found that BOROX catalysts are
highly effecting in dominating the stereochemical outcome of
multi-component aziridination of aldehydes that have chiral
centers either alpha or beta to the aldehyde carbon. BOROX
catalysts derived the VANOL and VAPOL ligands are equally
effective, but for the toughest substrates the 7,7’-di-t-
butylVANOL BOROX catalyst is the best. The methodology
developed here will allow making complex organic scaffolds
the near vicinity is important to selectivity.
Scheme 3. Catalyst Controlled Synthesis of Ethylene Diaziridines.
MEDAM
N
with more than two chiral centers where
stereochemical relationship is desired.
a definitive
(S)-VAPOL
BOROX
catalyst
(5 mol%)
MEDAM
Ph
12
CO2Et
43%
N
CO2Et
Ph
Received: ((will be filled in by the editorial staff))
N
MEDAM
Published online on ((will be filled in by the editorial staff))
MEDAMNH2
4a
MEDAM
N
14 95% syn:anti = 95:5
H
EDA 6
(R)-VAPOL
BOROX
catalyst
Ph
13 99% ee
Keywords: asymmetric catalysis · catalyst control · VAPOL · BOROX
catalyst · aziridines
MEDAM
N
O
(5 mol%)
CO2Et
Ph
N
MEDAM
[1]
[2]
[3]
Enantioselective Chemical Synthesis, Corey, E. J.; Kürti, L. Direct Book
Publishing, LLC, Dallas, TX 2010
For a recent example, see: G. Righi, P. Bovicelli, I. Tirotta, C. Sappino, E.
Mandic Chirality, 2016, 28, 387-393.
a) A. K. Gupta, M. Mukherjee, W. D. Wulff Org. Lett.. 2011, 13, 5866-
5869. b) A. K. Gupta, M. Mukherjee, G. Hu, W. D. Wulff J. Org. Chem.
2012, 77, 7932-7844.
L. Huang, W. Zhao, R. J. Staples, W. D. Wulff Chem. Sci. 2013, 4, 622-
628
M. Mukherjee, Y. Zhou, A. K. Gupta, Y. Guan, W. D. Wulff Eur. J. Org.
Chem. 2014, 1386-1390.
For citations to the literature, see: Y. Tanaka, T. Hasui, M. Suginome Org.
Lett. 2007, 9, 4407-4410.
15 74% anti:syn = 96:4
In the last twenty years or more there has been significant
interest in the synthesis of β-amino acids as a consequence of the
fact that they are needed in the synthesis of β-peptides and β-
lactams.[11,12] As an illustration of the synthetic utility of the
catalyst controlled asymmetric aziridination of chiral aldehydes,
we have carried out a concise synthesis of protected forms of β3-
homo-D-alloisoleucine and β3-homo-L-isoleucine (Scheme 4).
The aldehyde (S)-5e can be readily prepared from the
commercially available (S)-2-methyl-1-butanol (see Supporting
Information). The aziridination of (S)-5e with amine 4a and
ethyl diazoacetate 6 occurs with the BOROX catalyst prepared
from t-Bu2VANOL 8b with complete catalyst control giving a
96:4 selectivity with each isomer of the catalyst (see Table 2).
The key reductive ring-opening step was effected with
samarium(II) diiodide using a protocol that we have recently
reported.[6] For cis-aziridines, it was found that the N-substituent
needs to be activating or else both C-C and C-N cleavage occurs.
Thus the MEDAM group was removed and replaced by Fmoc
Scheme 4. A concise route to β3-homo-L-isoleucine and β3-homo-D-
[4]
[5]
[6]
[7]
a) G. Hu, A. K. Gupta, R. J. Huang, M. Mukherjee, W. D. Wulff J. Am.
Chem. Soc. 2010, 132, 14669-14675. b) M. J. Vetticatt, A. A. Desai, W. D.
Wulff J. Am. Chem. Soc. 2010, 132, 13104-13107. c) G. Hu, L. Huang, R.
H. Huang, W. D. Wulff J. Am. Chem. Soc. 2009, 131, 15615-15617.
M. J. Vetticatt, A. A. Desai, W/ D/ Wulff J. Org. Chem. 2013, 78, 5142-
5152.
[8]
[9]
H. Ren, W. D. Wulff Org. Lett. 2013, 15, 242.
[10] M. Mukherjee, A. K. Gupta, Z. Lu, Y. Zhang, W. D. Wulff J. Org. Chem.
2010, 75, 5643.
[11] For reviews, see: a) Enantioselective Synthesis of β-Amino Acids, E.
Juaristi, V. Soloshonok, Eds. Second Edition, 2005, John Wiley & Sons. b)
D. Seebach, A. K. Beck, S. Capone, G. Deniau, U. Groselj, E. Zass
Synthesis, 2009, 1-32. c) B. Weiner, W. Szymanski, D. B. Janssen, A. H.
J. Minnaard, B. L. Feringa Chem. Soc. Rev. 2010, 39, 1656-1691. d) D.
Seebach Chimia 2013, 67, 844-850. e) A. A. Grygorenko Tetrahedron
2015, 71, 5169-5216. f) L. Kiss, M. Cherepanova, F. Fülop, Tetrahedron
2015, 71, 2049-2069.
alloisoleucine.
Me
H
O
(S)-5e
MEDAMNH2 4a
EDA 6
(S)-t-Bu2VANOL
BOROX
(R)-t-Bu2VANOL
BOROX
catalyst
catalyst
[12] For more recent citations to the literature, see: a) D. Zhang, X. Chen, R.
Zhang, P. Yao, Q. Wu, D. Zhu ACS CataL. 2015, 5, 2220-2224. b) J.
Guang, A. J. Larson, C.-G. Zhao Adv. Synth. Catal. 2015, 357, 523-529. c)
R. Sundell, L. T. Kanerva Eur. J. Org. Chem. 2015, 1500-1506. d) D.
Meyer, R. Marti, D. Seebach Eur. J. Org. Chem. 2015, 4883-4891. e) S.
Mathew, H. Bea, S. P. Nadarajan, T. Chung, H. Yun Biotechnology, 2015,
196-197, 1-8. f) J. Cheng, X. Qi, M. Li, P. Chen, G. Liu J. Am. Chem. Soc.
2015, 137, 2480-2483. g) D. J. Jung, H. J. Jeon, J. H. Lee, S.-G. Lee Org.
Lett. 2015, 17, 3498-3501. h) J. Dai, W. Ren, H. Wang, Y. Shi Org.
Biomol. Chem. 2015, 13, 8429-8432. i) A. I. Romanens, G. Belanger Org.
Lett. 2015, 17, 322-325. j) H. Rangel, M. Carrillo-Morales, J. M. Galindo,
E. Castillo, A. Obregon-Zuniga, E. Juaristi, J. Escalante Tetrahedron:
Asymmetry 2015, 26, 325-332. k) R. M. Archer, M. Hutchby, C. L. Winn, J.
S. Fossey, S. D. Bull Tetrahedron 2015, 71, 8838-8847. l) E. Gianolio, R.
Mohan, A. Berkessel Adv. Synth. Catal. 2016, 358, 30-33. m) J. Ye, C.
Wang, L. Chen, X. Wu, L. Zhou, J. Sun Adv. Synth. Catal. 2016, 358,
1042-1047.
(10 mol%)
(10 mol%)
Me
Me
CO2Et
CO2Et
N
N
MEDAM
7e
7e'
MEDAM
95% 7e:7e' 96:4
90% 7e':7e 96:4
1) HOTf
2) FmocCl
3) SmI2
1) HOTf
2) FmocCl
3) SmI2
Me
Me
OEt
OEt
FmocHN
O
FmocHN
O
16' (59% 3 steps)
N-Fmoc-β3-homo-L-isoleucine
ethyl ester
16 (58% 3 steps)
N-Fmoc-β3-homo-D-alloisoleucine
ethyl ester
4
This article is protected by copyright. All rights reserved.