3
phenylboronic acid provided much higher yield than that of
ortho-methyl substituted (64% vs 45%, Table 3, 4a and 4b). The
similar results was also seen from the methoxyl substituted
aStandard reaction conditions: N-acyl-3,5-dimethylpyrazole (1.5
mmol), phenylboronic acid (0.5 mmol), Cu(OAc)2 (0.05 mmol,
10 mol%), MeOH (4 mL), 80 oC, under O2 atmosphere for 20 hrs.
bIsolated yield.
phenylbornic acids,
para-methoxyl phenylboronic acid
provided 66% yield of 4c, while ortho-methoxyl phenylboronic
acid provided only 31% yield of 4d. It should be noted that
1-naphthylboronic acid and heteroarylboronic acids were also
compatible with this reaction conditions (4f, 4n-4o), which
provide bi-heteroaryl compounds.
In conclusion, the direct coupling of N-acetyl pyrazoles and
arylboronic acids to afford C–N bond forming products have
developed. Compare to the classic Chan-Lam reaction, this
procedure avoided the use of free pyrazoles, and use the
protected pyrazoles as strating materials directly, which could
shorten the synthetic route and enhanced the synthetic efficiency
for the multi-steps synthesis. This reaction worked in a neutral
condition and did not require bases or ligands. The process
showed good functional groups tolerance. The further work
including the mechanism studies were still under investment.
Table 3. Scope of Arylboronic Acids.a,b
Acknowledgments
This work was supported by "Thousand Talents Program"
Young Investigator Award and the Start Funding Program of
SIOC.
References and notes
1. For recent reviews on pyrazole derivatives, see: (a) Fustero, S.;
Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. Chem. Rev. 2011,
111, 6984.; (b) A. Schmidt and A. Dreger, Curr. Org. Chem., 2011, 15,
1423. (c) G. Varvounis, Adv. Heterocycl. Chem., 2009, 98, 143.
2. (a) Bailey, J. Brit. 1969, GB 1156496 19690625. (b) Shams, H. Z.;
Helal, M. H.; Mohamed, F. A. Pigm. Resin Tech. 2001, 30, 99. (c) Ok,
S.; Altun, A.; Kasimogullari, R.; Sen, E. J. Chem. Eng.
Data 2013, 58, 3521.
3. Miniyar, P. B.; Murumkar, P. R.; Patil, P. S.; Barmade, M. A.; Bothara,
K. G. Mini Rev. Med. Chem. 2013, 13, 1607.
4. For recent reviews: (a) Chauhan, P.; Mahajan, S.; Enders, D.; Chem.
Commun., 2015, 51, 12890. (b) Kumar, V.; Kaur, K.; Gupta, G. K.;
Sharma, A. K. Eur. J. Med. Chem. 2013, 69, 735.
5. 1-α-amino-β-(pyrazolyl-N)-propanoic acid was the first natural product
containing pyrazole,which was isolated from water melon seeds (a) Noe,
F. F.; Fowden, L. Nature 1959, 184, B.A. 69. Peptides that contains
pyrazole structure was found from cucumber seeds, see: (b) Dunnill, P.
M.; Fowden, L. Biochem. J. 1963, 86, 391. for the biosynthesis, see: Noe,
F. F.; Fowden, L. Biochem. J. 1960, 77, 543.
6.
(a) Schröter, H.-B.; Neumann, D.; Katritzky, A. R.; Swinbourne, F. J.
Tetrahedron, 1966, 22, 2895. For biosynthesis, see: (b) Brown, E. G.;
Diffin, F. M. Phytochem. 1990, 29, 469.
aStandard reaction conditions: N-acetyl-3,5-dimethylpyrazole (1,
1.5 mmol), arylboronic acid (2, 0.5 mmol), Cu(OAc)2 (0.05
o
7. (a). Daves, G. D. Jr.; Cheng, C. C.; Prog. Med. Chem., 1976, 13, 303. (b)
Suhadolnik, R. J. Prog. Nucleic Acid Res. Mol. Biol. 1979, 22, 193. For
biosynthesis, see: (c) Buchanan, J. G.; Hamblin, M. R.; Sood, G. R.;
Wightman, R. H. J. Chem. Soc., Chem. Commun., 1980, 917.
8. For reviews, see: (a) Chauhan, P.; Mahajan, S.; Enders, D. Chem.
Commun., 2015, 51, 12890. (b) Stanovnik, B.; Svete, J. In Pyrazoles;
Neier, R., Ed.; Science of Synthesis, Houben-Weyl, Methods of Organic
Transformations, Georg Thieme: Stuttgart, Germany, 2002; Vol. 12, pp
15-225.
9. (a) Elguero, J. In Comprehensive Heterocyclic Chemistry; Katritzky, A.
R., Rees, C. W., Eds.; Pergamon Press: Oxford, U.K., 1984; Vol. 5, 167.
(b) Elguero, J. In Comprehensive Heterocyclic Chemistry II; Katritzky,
A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press: Oxford, U.
K., 1996; Vol. 3, 1. (c) Stanovnik, B.; Svete, J. In Pyrazoles; Neier, R.,
Ed.; Science of Synthesis, Houben-Weyl, Methods of Organic
Transformations, Georg Thieme: Stuttgart, Germany, 2002; Vol. 12, 15.
(d) Yet, L. In Comprehensive Heterocyclic Chemistry III; Katritzky, A.
R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier:
Oxford, U.K., 2008; Vol. 4, p 1. (e) the most recent review, see, ref 1
(a).
mmol, 10 mol%), MeOH (4 mL), 80 C, under O2 atmosphere
(balloon) for 20 hrs. bIsolated yields.
We also examined the other widely used N-acyl protecting
groups. The results showed that n-propyl, tert-butyl and
benzoyl worked very well in this C–N coupling reactions, and
afforded as good yields as acetyl protecting group. (see Table 4).
From this aspect, our C–N bond forming conditions showed
universal tolerance.
Table 4. Scope of N-Acylpyrazoles.a
HO
OH
O
B
N
N
Cu(OAc)2 (10 mol%)
N
R1
N
Me
+
Me
MeOH
Me
Me
80°C, O2, 20h
3a
Entry
R1
Me
Et
Yield (%)b
10. For recent review, see: Bariwalab, J.; Van der Eycken, E. Chem. Soc.
Rev., 2013, 42, 9283.
1
2
3
4
53
41
45
47
11. Yu, J.-Q.; Shi, Z.-J. C–H Activation, Springer, Berlin, 2010.
12. (a) Martin, R.; Rivero, M. R.; Buchwald, S. L. Angew. Chem., Int.
Ed. 2006, 45, 7079. (b) DeAngelis, A.; Wang, D.-H.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2013, 52, 3434. (c) Mann, G.; Hartwig, J. F.;
Driver, M. S.; Fernández-Rivas, C. J. Am. Chem. Soc. 1998, 120, 827. (d)
Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan,
t-Bu
Ph