Published on Web 09/04/2004
A Self-Assembled Multivalent Pseudopolyrotaxane for Binding
Galectin-1
Alshakim Nelson,† Jason M. Belitsky,† Se´bastien Vidal,§ C. Steven Joiner,†
Linda G. Baum,*,‡ and J. Fraser Stoddart*,†
Contribution from the California NanoSystems Institute (CNSI), the Department of Chemistry
and Biochemistry, and the Department of Pathology, UniVersity of California,
Los Angeles, California 90095
Received February 17, 2004; E-mail: lbaum@mednet.ucla.edu; stoddart@chem.ucla.edu
Abstract: A self-assembled pseudopolyrotaxane consisting of lactoside-displaying cyclodextrin (CD) “beads”
threaded onto a linear polyviologen “string” was investigated for its ability to inhibit galectin-1-mediated
T-cell agglutination. The CDs of the pseudopolyrotaxane are able to spin around the axis of the polymer
chain as well as to move back and forth along its backbone to alter the presentation of its ligand. This
supramolecular superstructure incorporates all the advantages of polymeric structures, such as the ability
to span large distances, along with a distinctively dynamic presentation of its lactoside ligands to afford a
neoglycoconjugate that can adjust to the relative stereochemistries of the lectin’s binding sites. The
pseudopolyrotaxane exhibited a valency-corrected 10-fold enhancement over native lactose in the
agglutination assay, which was greater than the enhancements observed for lactoside-bearing trivalent
glycoclusters and a lactoside-bearing chitosan polymer tested using the same assay. The experimental
results indicate that supramolecular architectures, such as the pseudopolyrotaxane, provide tools for
investigating protein-carbohydrate interactions.
Phenomena that control the form and function of living
systems, such as self-assembly,1 molecular recognition,2 and
multivalency,3 have served to hasten the development of
supramolecular chemistry4 and template-directed synthesis,5
particularly of mechanically interlocked molecular compounds.6
Once considered chemical curiosities, complexes such as
pseudorotaxanes7 and compounds such as catenanes8 and
rotaxanes9 are now contributing to advances in molecular
electronics10 and the construction of artificial molecular ma-
chines.11 In addition, polymeric pseudorotaxanes12 and mechani-
cally interlocked polyrotaxanes13 are enriching polymer chem-
istry and materials science in terms of both structure14 and
function.15 While biology has provided much of the inspiration
† California NanoSystems Institute and Department of Chemistry and
Biochemistry, University of California, Los Angeles, CA.
‡ Department of Pathology, University of California, Los Angeles, CA.
§ Current address: Laboratoire de Chimie Organique 2, Universite Claude
Bernard Lyon 1, France.
(1) (a) Lindsey, J. S. New J. Chem. 1991, 15, 153-180. (b) Whitesides, G.
M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312-1319. (c) Philp,
D.; Stoddart J. F. Synlett 1991, 445-458. (d) Philp, D.; Stoddart, J. F.
Angew. Chem., Int. Ed. Engl. 1996, 35, 1154-1196. (e) Fujita, M. Acc.
Chem. Res. 1999, 32, 53-61. (f) Rebek, J., Jr. Acc. Chem. Res. 1999, 32,
278-286. (g) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R.
Angew. Chem., Int. Ed. 2001, 40, 988-1011. (h) Prins, L. J.; Reinhoudt,
D. N.; Timmerman, P. Angew. Chem., Int. Ed. 2001, 40, 2382-2426. (i)
Seidel, S. R.; Stang, P. J. Acc. Chem. Res. 2002, 35, 972-983. (j) Elemans,
J. A. A. W.; Rowan, A. E.; Nolte, R. J. M. J. Mater. Chem. 2003, 13,
2661-2670.
(6) (a) Amabilino, D. B.; Stoddart, J. F. Chem. ReV. 1995, 95, 2725-2828.
(b) Vo¨gtle, F.; Du¨nwald, T.; Schmidt, T. Acc. Chem. Res. 1996, 29, 451-
460. (c) Breault, G. A.; Hunter, C. A.; Mayers, P. C. Tetrahedron 1999,
55, 5265-5293. (d) Cantrill, S. J.; Pease, A. R.; Stoddart, J. F. J. Chem.
Soc., Dalton Trans. 2000, 3715-3734.
(7) Ashton, P. R.; Belohradsky, M.; Philp, D.; Spencer, N.; Stoddart, J. F. J.
Chem. Soc., Chem. Commun. 1993, 1274-1277.
(8) (a) Leigh, D. A.; Wong, J. K. Y.; Dehez, F.; Zerbetto, F. Nature 2003,
424, 174-179. (b) Dietrich-Buchecker, C.; Colasson, B.; Fujita, M.; Hori,
A.; Geum, N.; Sakamoto, S.; Yamaguchi, K.; Sauvage, J.-P. J. Am. Chem.
Soc. 2003, 125, 5717-5725.
(2) See special issue on molecular recognition in Chem. ReV. 1997, 97, 1231-
1734.
(3) (a) Mammen, M.; Choi, S.-K.; Whitesides, G. M. Angew. Chem., Int. Ed.
1998, 37, 2754-2794. (b) Lee, R. T.; Lee, Y. C. Glycoconjugate J. 2000,
17, 543-551. (c) Lundquist, J. J.; Toone, E. J. Chem. ReV. 2002, 102,
555-578. (d) Ercolani, G. J. Am. Chem. Soc. 2003, 125, 16097-16103.
(e) Kitov, P. I.; Bundle, D. R. J. Am. Chem. Soc. 2003, 125, 16271-16284.
(4) (a) Lehn, J. M. Supramolecular Chemistry; VCH: Weinheim, Germany,
1995. (b) Reinhoudt, D. N.; Crego-Calama, M. Science 2002, 295, 2403-
2407. (c) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418-
2421.
(9) (a) Pomeranc, D.; Jouvenot, D.; Chambron, J.-C.; Collin, J.-P.; Heitz, V.;
Sauvage, J. P. Chem.-Eur. J. 2003, 9, 4247-4254. (b) Kilbinger, A. F.
M.; Cantrill, S. J.; Waltman, A. W.; Day, M. W.; Grubbs, R. H. Angew.
Chem., Int. Ed. 2003, 42, 3281-3285.
(10) (a) Pease, A. R.; Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.;
Heath, J. R. Acc. Chem. Res. 2001, 34, 433-444. (b) Raehm, L.; Kern,
J.-M.; Sauvage, J. P.; Hamann, C.; Palacin, S.; Bourgoin, J.-P. Chem.-
Eur. J. 2002, 8, 2153-2162.
(11) (a) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem.,
Int. Ed. 2000, 39, 3348-3391. (b) Harada, A. Acc. Chem. Res. 2001, 34,
456-464. (c) Balzani, V.; Credi, A.; Venturi, M. Molecular DeVices and
Machines: A Journey into the Nano World; Wiley-VCH: Weinheim,
Germany, 2003. (d) Flood, A. H.; Ramirez, R. J. A.; Deng, W.-Q.; Muller,
R. P.; Goddard, W. A., III; Stoddart, J. F. Aust. J. Chem. 2004, 57, 301-
322.
(5) (a) Busch, D. H.; Stephensen, N. A. Coord. Chem. ReV. 1990, 100, 119-
154. (b) Anderson, S.; Anderson, H. L.; Sanders, J. K. M. Acc. Chem. Res.
1993, 26, 469-475. (c) Cacciapaglia, R.; Mandolini, L. Chem. Soc. ReV.
1993, 22, 221-231. (d) Hoss, R.; Vo¨gtle, F. Angew. Chem., Int. Ed. 1994,
33, 375-384. (e) Hubin, T. J.; Kolchinski, A. G.; Vance, A. L.; Busch, D.
L. AdV. Supramol. Chem. 1999, 5, 237-357. (f) Templated Organic
Synthesis; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim,
Germany, 1999. (g) Stoddart, J. F.; Tseng, H. R. Proc. Natl. Acad. Sci.
U.S.A. 2002, 99, 4797-4800.
(12) Amabilino, D. B.; Parsons, I. W.; Stoddart, J. F. Trends Polym. Chem.
1994, 2, 146-152.
(13) Raymo, F. M.; Stoddart, J. F. Chem. ReV. 1999, 99, 1643-1663.
9
11914
J. AM. CHEM. SOC. 2004, 126, 11914-11922
10.1021/ja0491073 CCC: $27.50 © 2004 American Chemical Society