LETTER
Base-Catalysed Approach to Disubstituted Epidithiodiketopiperazines
2565
Table 2 Reaction of Amines with Diacetate 7 using DMAPa
Table 3 Deprotection/Oxidation and Synthesis of the ETP Core
O
O
Entry
Amine
Method
Yield (%)
S
R
R
PMB
Ph
N
N
BBr3, CH2Cl2
S
S
1
2
3-chlorobenzylamine
3-chlorobenzylamine
benzylamine
A
B
A
A
B
A
C
A
C
A
A
75
68
68
53
76
70
28
76
46
61
78
N
Ph
N
–78 °C to r.t.
NH4Cl (aq), I2
S
O
13
PMB
O
14
3
Entry
Amine (R1)
Yield (%)
4
allylamine
5
allylamine
1
3
3-chlorobenzylamine
benzylamine
60
85
60
64
75
61
59
6
ethyl 4-aminobutanoate
ethyl 4-aminobutanoate
methyl 6-aminohexanoate
methyl 6-aminohexanoate
ethyl 3-aminopropanoate
methyl 5-aminopentanoate
7
5
allylamine
8
7
ethyl 4-aminobutanoate
methyl 6-aminohexanoate
ethyl 3-aminopropanoate
methyl 5-aminopentanoate
9
9
10
11
10
11
a Reaction conditions: (A) MeCN, p-methoxybenzylmercaptan,
DMAP, reflux; (B) MeCN, p-methoxybenzylmercaptan, DMAP, mi-
crowave (5 min, 150 ºC); (C) MeCN, p-methoxybenzylmercaptan,
DMAP, microwave (30 min, 130 ºC). Yields refer to isolation of the
corresponding protected ETP 12 after purification.
References and Notes
(1) Aliev, A. E.; Hilton, S. T.; Motherwell, W. B.; Selwood, D.
L. Tetrahedron Lett. 2006, 47, 2387.
(2) Cook, K. M.; Hilton, S. T.; Mecinovic, J.; Motherwell, W.
B.; Figg, W. D.; Schofield, C. J. J. Biol. Chem. 2009, 284,
26831.
2, entries 4 and 5) gave a higher yield when microwave
conditions were used. This may be due to the fact that
when the reaction is heated in a sealed vessel in this man-
ner, allylamine cannot be lost by evaporation. The suc-
cessful obtention of the protected ETP core compounds
containing ester moieties (Table 2, entries 6–11) clearly
highlights the importance of DMAP as an alternative cat-
alyst for the cyclisation of ETP intermediates. Using this
approach, we were able to introduce different carbon
length ester groups in the ETP core which had previously
not been possible.
(3) (a) Hilton, S. T.; Motherwell, W. B.; Potier, P.; Pradet, C.;
Selwood, D. L. Bioorg. Med. Chem. Lett. 2005, 15, 2239.
(b) Block, K. M.; Wang, H.; Szabo, L. Z.; Polaske, N. W.;
Henchey, L. K.; Dubey, R.; Kushal, S.; Laszlo, C. F.;
Makhoul, J.; Song, Z.; Meuillet, E. J.; Olenyuk, B. Z. J. Am.
Chem. Soc. 2009, 131, 18078. (c) Waring, P.; Beaver, J.
Gen. Pharmacol. 1996, 27, 1311. (d) Chai, C. L.; Waring, P.
Redox Reports 2000, 5, 257. (e) Waring, P.; Eichner, R. D.;
Müllbacher, A. Med. Res. Rev. 1988, 8, 499. (f) Johnson, J.
R.; Bruce, W. F.; Dutcher, J. D. J. Am. Chem. Soc. 1943, 65,
2005. (g) Gardiner, D. M.; Waring, P.; Howlett, B. J.
Microbiology 2005, 151, 1021.
(4) (a) Isham, C. R.; Tibodeau, J. D.; Bossou, A. R.; Merchan, J.
R.; Bible, K. C. Br. J. Cancer 2012, 106, 314. (b) Staab, A.;
Loeffler, J.; Said, H. M.; Diehlmann, D.; Katzer, A.; Beyer,
M.; Fleischer, M.; Schwab, F.; Baier, K.; Einsele, H.;
Flentje, M.; Vordermark, D. BMC Cancer 2007, 7, 213.
(c) Yano, K.; Horinaka, M.; Yoshida, T.; Yasuda, T.;
Taniguchi, H.; Goda, A. E.; Wakada, M.; Yoshikawa, S.;
Nakamura, T.; Kawauchi, A.; Miki, T.; Sakai, T. Int. J.
Oncol. 2011, 38, 365.
The final step of the reaction sequence involved a com-
bined deprotection/oxidation step for conversion of the
protected derivatives to the ETP core (Table 3).1
All compounds underwent clean conversion to the ETP
core 1 in good yield (Table 3). Pleasingly, protected ETPs
incorporating ester groups (Table 3, entries 7–10) were
readily deprotected and oxidised to the ETP core 1 also in
good yield, clearly highlighting the effectiveness of
DMAP as a catalyst.
(5) Hilton, S. T.; Motherwell, W. B.; Selwood, D. L. Synlett
2004, 2609.
In summary, DMAP proved to be an effective catalyst for
the synthesis of novel ETP derivatives.8 It is clearly supe-
rior to the use of TFA which had proven to be incompati-
ble with a number of functional groups and further
investigations into the scope of the DMAP-catalysed reac-
tion are under active investigation in our laboratories.
(6) (a) Öhler, E.; Tataruch, F.; Schmidt, U. Chem. Ber. 1972,
105, 3658. (b) Öhler, E.; Poisel, H.; Tataruch, F.; Schmidt,
U. Chem. Ber. 1972, 105, 635. (c) Kishi, Y.; Fukuyama, T.;
Nakatsuka, S. J. Am. Chem. Soc. 1973, 95, 6490.
(d) Baumann, E.; Fromm, E. Ber. 1891, 24, 1441. (e) Kim,
J.; Ashenhurst, J. A.; Movassaghi, M. Science 2009, 324,
238. (f) Kim, J.; Movassaghi, M. J. Am. Chem. Soc. 2010,
132, 14376. (g) Iwasa, E.; Hamashima, Y.; Fujishiro, S.;
Hashizume, D.; Sodeoka, M. Tetrahedron 2011, 67, 6587.
(7) (a) Nicolaou, K. C.; Giguere, D.; Totokotsopoulos, S.; Sun,
Y.-P. Angew. Chem. Int. Ed. 2012, 51, 728. (b) Codelli, J.
A.; Puchlopek, A. L. A.; Reisman, S. E. J. Am. Chem. Soc.
2012, 134, 1930.
Acknowledgment
We gratefully acknowledge funding from FCT (grant No.
SFRH/BD/65630/2009) for the provision of a PhD studentship (to
B.C.S.) for this work.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 2563–2566