ChemComm
Communication
2 For reviews, see: (a) R. Waterman, Chem. Soc. Rev., 2013, 42, 5629;
(b) E. M. Leitao, T. Jurca and I. Manners, Nat. Chem., 2013, 5, 817;
(c) M. S. Hill, D. J. Liptrot, D. J. MacDougall, M. F. Mahon and
T. P. Robinson, Chem. Sci., 2013, 4, 4212; (d) J. Y. Corey, Chem. Rev.,
2011, 111, 863; (e) J. F. Harrod, Coord. Chem. Rev., 2000, 206, 493;
( f ) J. A. Reichl and D. H. Berry, Adv. Organomet. Chem., 1998, 43, 197;
for pioneering work, see: (g) E. Matarasso-Tchiroukhine, Chem.
Commun., 1990, 681; for recent examples, see: (h) J. F. Dunne,
S. R. Neal, J. Engelkemier, A. Ellern and A. D. Sadow, J. Am. Chem.
Soc., 2011, 133, 16782; (i) C. K. Toh, H. T. Poh, C. S. Lim and
W. Y. Fan, J. Organomet. Chem., 2012, 717, 9; ( j) F. Buch and
S. Harder, Organometallics, 2007, 26, 5132; (k) A. Iida, A. Horii,
T. Misaki and Y. Tanabe, Synthesis, 2005, 2677; (l) F. Lunzer,
C. Marschner and S. Landgraf, J. Organomet. Chem., 1998, 568, 253;
(m) H. Q. Liu and J. F. Harrod, Can. J. Chem., 1992, 70, 107;
(n) H. Q. Liu and J. F. Harrod, Organometallics, 1992, 11, 822;
(o) W. D. Wang and R. Eisenberg, Organometallics, 1991, 10, 2222;
(p) Y. D. Blum, K. B. Schwartz and R. M. Laine, J. Mater. Sci., 1989,
24, 1707; (q) Y. Blum and R. M. Laine, Organometallics, 1986, 5, 2081.
3 (a) P. G. M. Wuts and T. W. Greene, Protective Group in
Organic Chemistry, John Wiley & Sons, Inc., Hoboken, New Jersey,
4th edn, 2007; (b) S. Djuric, J. Venit and P. Magnus, Tetrahedron
Lett., 1981, 22, 1787.
Scheme 3 Proposed catalytic cycle for the Si–N coupling/hydrogenation
domino reaction.
and indole 5v. The reaction of 1-D-2,3-dimethyl indole (1-D-5v, 95% D)
with H–SiMePh2 (4a) gave exclusively cis-3-D-2,3-dimethyl indoline
(3-D-6v) in high yields (97%, 92% D-incorporation, Scheme 2a).
The reaction of D–SiMePh2 (D-2a, 95% D) with 5v provided
exclusively cis-2-D-2,3-dimethyl indoline (2-D-6v) in 96% yield
with 92% D-incorporation at position 2. Together the chemo-
selective deuteration and the absence of dissolved or FLP-
activated H2 or HD14 strongly support a N-silylation/rearrangement/
reduction mechanism (Scheme 3). The product of the B(C6F5)3-
catalyzed silyl-transfer to 5v is 1-silyl-1-H-indol-1-ium 6, which
rearranges to the more stable 1-silyl-3-H-indol-1-ium 7. Alternatively,
an intermolecular proton-transfer might be conceivable. However,
according to our cross experiment using 5t–u and 1-silyl-indole
8, the sigmatropic rearrangement mechanism is more likely
(Scheme 2c). The indole derivatives 5t and 5u were equally
reactive as 5v (96–98%, 24 h, see Table 1, entries 23–25) and
should be readily protonated by transiently formed 6 (formed
by the reaction of 5 and 4a, compare Scheme 3). However, the
reaction of an equimolar mixture of 8, 5t–u, and 4a in the
presence of 10 mol% 2 produced 6t or 6u as the product (6u/6v
>95 : 5; 6t : 6v >90 : 10). This is a strong indication that inter-
molecular proton-transfer is not operative in the silylation/
hydrogenation reaction sequence. The final step in the catalytic
cycle is the hydride transfer from [H–B(C6F5)3] to the highly
electrophilic iminium species 7 from the least hindered side
liberating cis-6v and the catalyst 2.
4 T. Tsuchimoto, Y. Iketani and M. Sekine, Chem.–Eur. J., 2012,
18, 9500.
5 (a) T. Stahl, H. F. T. Klare and M. Oestreich, J. Am. Chem. Soc., 2013,
135, 1248; (b) T. Stahl, K. Muether, Y. Ohki, K. Tatsumi and
M. Oestreich, J. Am. Chem. Soc., 2013, 135, 10978; (c) C. D. F. Konigs,
H. F. T. Klare, Y. Ohki, K. Tatsumi and M. Oestreich, Org. Lett., 2012,
14, 2842; (d) H. F. T. Klare, M. Oestreich, J.-i. Ito, H. Nishiyama, Y. Ohki
and K. Tatsumi, J. Am. Chem. Soc., 2011, 133, 3312; (e) Y. Ohki,
Y. Takikawa, H. Sadohara, C. Kesenheimer, B. Engendahl, E. Kapatina
and K. Tatsumi, Chem.–Asian J., 2008, 3, 1625.
6 C. D. F. Koenigs, M. F. Mueller, N. Aiguabella, H. F. T. Klare and
M. Oestreich, Chem. Commun., 2013, 49, 1506.
7 For metal-free silylation of OH-groups, see: (a) D. J. Gao and
C. M. Cui, Chem.–Eur. J., 2013, 19, 11143; (b) for metal-free silylation
of P–P bonds, see: S. J. Geier and D. W. Stephan, Chem. Commun.,
2010, 46, 1026.
˜
8 (a) L. Greb, S. Tussing, B. Schirmer, P. Ona-Burgos, K. Kaupmees,
M. Lokov, I. Leito, S. Grimme and J. Paradies, Chem. Sci., 2013,
˜
4, 2788; (b) L. Greb, P. Ona-Burgos, B. Schirmer, S. Grimme,
D. W. Stephan and J. Paradies, Angew. Chem., Int. Ed., 2012, 51, 10164.
9 (a) J. Hermeke, M. Mewald and M. Oestreich, J. Am. Chem. Soc.,
˜
2013, 46, 17537; (b) L. Greb, P. Ona-Burgos, A. Kubas, F. C. Falk,
F. Breher, K. Fink and J. Paradies, Dalton Trans., 2012, 40, 9056;
(c) W. E. Piers, A. J. V. Marwitz and L. G. Mercier, Inorg. Chem., 2011,
50, 12252; (d) A. Berkefeld, W. E. Piers and M. Parvez, J. Am. Chem.
Soc., 2010, 132, 10660; (e) J. M. Blackwell, D. J. Morrison and
W. E. Piers, Tetrahedron, 2002, 58, 8247; ( f ) M. Rubin, T. Schwier
and V. Gevorgyan, J. Org. Chem., 2002, 67, 1936; (g) D. J. Parks,
J. M. Blackwell and W. E. Piers, J. Org. Chem., 2000, 65, 3090;
(h) J. M. Blackwell, E. R. Sonmor, T. Scoccitti and W. E. Piers, Org.
Lett., 2000, 2, 3921; (i) W. E. Piers and T. Chivers, Chem. Soc. Rev.,
1997, 26, 345; ( j) D. J. Parks and W. E. Piers, J. Am. Chem. Soc., 1996,
118, 9440.
In summary, we have developed the metal-free Si–N cross-
dehydrocoupling for primary and secondary aryl amines having
solely molecular hydrogen as byproduct. Indole derivatives
undergo N-silylation followed by a rearrangement/reduction
sequence to furnish indolines in high yields and high diastereo-
selectivity (d.r. 10: 1).
10 The elevated temperature of 60–70 1C was required to thermally
cleave the aniline/B(C6F5)3 adduct as evidenced by 11B NMR.
11 Neither N- nor C3-silylation products were observed, see:
L. D. Curless, E. R. Clark, J. J. Dunsford and M. J. Ingleson, Chem.
Commun., 2014, DOI: 10.1039/c3cc47372d.
12 For B(C6F5)3-catalyzed 1,4-hydrosilylation of 2-phenyl chinoline, see:
S. J. Geier, P. A. Chase and D. W. Stephan, Chem. Commun., 2010,
46, 4884.
13 Determined by deprotection of 6v and comparison of the 1H NMR
spectra of the resulting 1-H indoline with literature reported NMR
data: F. O. Arp and G. C. Fu, J. Am. Chem. Soc., 2006, 128, 14264.
Notes and references
1 For reviews, see: (a) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 14 Although the hydrogenation of N-methyl indoles is reported
111, 1215; (b) C. J. Scheuermann, Chem.–Asian J., 2010, 5, 436;
(c) G. E. Dobereiner and R. H. Crabtree, Chem. Rev., 2010, 681;
(d) C. J. Li, Acc. Chem. Res., 2009, 42, 335; for recent examples, see:
(e) X. M. Jie, Y. P. Shang, P. Hu and W. P. Su, Angew. Chem., Int. Ed.,
2013, 52, 3630; ( f ) N. Kuhl, M. N. Hopkinson and F. Glorius, Angew.
Chem., Int. Ed., 2012, 51, 8230.
(10 mol% 2, 103 bar H2, 80 1C, see: D. W. Stephan, S. Greenberg,
T. W. Graham, P. Chase, J. J. Hastie, S. J. Geier, J. M. Farrell,
C. C. Brown, Z. M. Heiden, G. C. Welch and M. Ullrich, Inorg.
Chem., 2011, 50, 12338) the hydrogenation of 1-silyl-2,3-dimethyl
indole (4 bar H2) in the presence of 5 mol% 2 in toluene at 70 1C did
not furnish indoline 6v.
2320 | Chem. Commun., 2014, 50, 2318--2320
This journal is ©The Royal Society of Chemistry 2014