M. C. Joshi et al. / Bioorg. Med. Chem. Lett. 17 (2007) 3226–3230
3229
resorcinol ethers (3,4)20,21 were found inactive upto
1000 lg/mL. So, we believe that the antibacterial activ-
ity of these cyclic enediynes is due to the presence of
enediyne moiety, not due to the resorcinol ether. More-
over studies are currently underway to further optimize
these compounds against bacterial infection.
Combined organic layer was dried over anhydrous
Na2SO4 and filtered. The excess of solvent was evaporated
under vacuo. Residue was purified by column chroma-
tography (15% ethyl acetate in hexane). Yield 1.55 g
(92%); IR (KBr, cmÀ1): 2923, 2122, 1148; 1H NMR
(300 MHz, CDCl3): 2.62 (s, 2H), 4.75 (s, 4H), 6.62–6.78
(m, 3H), 7.19–7.23 (m, 1H); MS (m/z): 186 (M+), 161, 147.
Synthesis of 2,11-dioxa-bicyclo [10.3.1] hexadeca-
1(15),6,12(16),13-tetra-ene-4,8-diyne (6). To a suspension
of Pd(PPh3)4 (224 mg, 0.19 mmol), CuI (164 mg,
0.86 mmol) and n-butylamine (1.58 g, 21.5 mmol) in
anhydrous benzene (30 mL), solution of 3 (800 mg,
4.3 mmol) in 5 mL benzene was added dropwise and
reaction mixture was stirred for 20 min. Then cis-dichlo-
roethylene (420 mg, 4.3 mmol) was added by syringe
under nitrogen atmosphere at 40 ꢁC and reaction mixture
was stirred for 13 h at same temperature. Reaction
mixture was washed with cold hexanes and solvent was
removed under reduced pressure. The crude product thus
obtained was purified by SiO2 column (10% ethyl acetate
in hexane). Yield 600 mg (66%); IR (KBr, cmÀ1): 2922,
2211, 1148; 1H NMR (300 MHz, CDCl3): 4.86 (s, 4H),
5.90 (s, 2H), 6.43 (d, J = 7.4 Hz 1H), 6.63–6.66 (m, 2H),
7.18 (m, 1H); 13C NMR (75.5 MHz, CDCl3): 57.2 (OCH2),
81.49 (Cquart), 92.49 (Cquart), 103.06 (CH), 108.48 (CH),
111.80 (CH), 130.06 (CH), 130.34 (CH), 159.25 (Cquart);
MS (m/z): 210 (M+); Anal. calcd for C14H10O2: C,79.98;
H, 4.79. Found: C, 80.09; H, 4.99.
In conclusion, we have shown for the first time that syn-
thetic enediynes can have potential in the treatment of
microbial infections apart from their use in the antican-
cer drug discovery programme.
Acknowledgements
D.S.R. thanks Department of Science and Technology,
New Delhi, India, for financial support (DO No.: SR/
FTP/CSA-18/2003) and Dr. Santosh Pasha, Institute
of Genomics & Integrative Biology, Mall Road, Delhi,
for her help.
References and notes
1. Smith, A. L.; Nicolaou, K. C. J. Med. Chem. 1996, 39,
2103.
Synthesis
1(16),6,12,14-tetraene-4,8-di-yne-13 carboxaldehyde (7).
To solution of 2,4-dihydroxybenzaldehyde (2.0 g,
of
2,11-dioxabicyclo
[10.3.1]hexadeca-
2. Rawat, D. S.; Zaleski, J. M. Synlett 2004, 393.
3. Davies, J.; Wang, H.; Taylor, T.; Warabi, K.; Huang,
X.-H.; Andersen, R. J. Org. Lett. 2005, 7, 5233.
4. Joshi, M. C.; Joshi, P.; Rawat, D. S. Arkivoc 2006, 16, 65.
5. Shen, B.; Liu, W.; Nonaka, K. Curr. Med. Chem. 2003, 10,
2317.
6. Tuesuwan, B.; Kerwin, S. M. Biochemistry 2006, 45, 7265.
7. Suzuki, I.; Shigenaga, A.; Nemoto, H.; Shibuya, M.
Tetrahedron Lett. 2004, 45, 1955.
8. Banfi, L.; Basso, A.; Guanti, G.; Riva, R. Arkivoc 2006, 7,
261.
9. Benites, P. J.; Holmberg, R. C.; Rawat, D. S.; Kraft, B. J.;
Klein, L. J.; Peters, D. G.; Thorp, H. H.; Zaleski, J. M. J.
Am. Chem. Soc. 2003, 125, 6434.
10. Basak, A.; Bag, S. S.; Basak, A. Bioorg. Med. Chem. 2005,
13, 4096.
11. Lin, C.-F.; Lo, Y.-H.; Hsieh, M.-C.; Chen, Y.-H.; Wang,
J.-J.; Wu, M.-J. Bioorg. Med. Chem. 2005, 13, 3565.
12. Rawat, D. S.; Zaleski, J. M. J. Am. Chem. Soc. 2001, 123,
9675.
a
14.5 mmol), K2CO3 (10 g, 72.5 mmol) in 25 mL dry
DMF, solution of 1,8-dibromo-oct-4-ene-1,6-diyne18
(3.98 g, 15.2 mmol) in 5 mL DMF was added dropwise.
The reaction mixture was stirred at ambient temperature
for 8 h. The reaction mixture was extracted with CHCl3
(6 · 25 mL), and the combined organic layer was washed
with water (6 · 250 mL). The organic layer was dried over
anhydrous Na2SO4 and solvent was removed under
reduced pressure. The crude product was purified over
silica gel column using 10% ethyl acetate in hexanes as an
eluent. Yield 2.14 g (62%); mp. 138 ꢁC; IR (KBr, cmÀ1):
2932, 2225, 1690; 1H NMR (300 MHz, CDCl3): 5.00 (s,
2H), 5.07 (s, 2H), 5.95 (s, 2H), 6.64 (m, 1H), 7.36 (m, 1H),
7.83 (d, J = 6 Hz, 1H), 10.29 (s, 1H); 13C NMR
(75.5 MHz, CDCl3): 57.03 (OCH2), 57.45 (OCH2), 87.45
(Cquart), 87.72 (Cquart), 90.98 (Cquart), 91.11 (Cquart),
101.58 (CH), 112.41 (CH), 120.11 (Cquart), 123.41 (CH),
131.05 (CH), 160.89 (Cquart), 162.92 (Cquart), 188.48
(Cquart); MS (m/z): 238 (M+); Anal. calcd for C15H10O3:
C, 75.62; H, 4.23. Found: C, 75.91; H, 4.42.
13. Jones, G. B.; Fouad, F. S. Curr. Pharm. Des. 2002, 8,
2415.
14. Wang, Z.; He, Q.; Liang, Y.; Wang, D.; Li, Yi-Y.; Li, D.
Biochem. Pharm. 2003, 65, 1767.
15. Liu, X.; He, H.; Feng, Y.; Zhang, M.; Ren, K.; Shao, R.
Anti-cancer Drugs 2006, 17, 173.
16. Lin, C.-F.; Hsieh, P.-C.; Lu, W.-D.; Chiu, H.-F.; Wu,
M.-J. Bioorg. Med. Chem. 2001, 9, 1707.
17. Nicolaou, K. C.; Dia, W.-M. Angew. Chem., Int. Ed. Engl.
1991, 30, 1387.
Synthesis of (2,11-dioxabi-cyclo[10.3.1] hexadeca1(15),6,
12(16),13-tetra-ene-4,8-diyn-13 yl)methanol (8). To a solu-
tion of 7 (0.4 g, 1.6 mmol) in 20 mL dry methanol, sodium
borohydride (0.2 g, 7.1 mmol) was added at 20 ꢁC and
reaction mixture was stirred for 1 h. Solvent from the
reaction mixture was removed under reduced pressure and
crude product was purified by column chromatography
(30% ethyl acetate in hexanes). Yield: 322 mg (80%); mp.
135 ꢁC; IR (KBr, cmÀ1): 3433, 2208, 1590, 1447, 1268, 1099;
1H NMR (300 MHz, CDCl3): 1.98 (br s, 1H), 4.64 (s, 2H,
CH2OH), 4.90 (s, 2H, OCH2), 4.99 (s, 2H, OCH2), 5.90 (s,
2H), 6.62 (d, J = 6Hz, 1H), 7.22 (m, 1H), 7.38 (s, 1H); MS
(m/z): 240 (M+), 223; Anal. calcd for C15H12O3: C,74.99; H,
5.03. Found: C, 74.81; H, 5.22.
18. Konig, B.; Pitsch, W.; Dix, I.; Jones, P. G. Synthesis 1996,
446.
19. Synthesis of 1,3-bis-prop-2-ynyloxy-benzene (3). Mixture of
resorcinol (1.0 g, 9.1 mmol) and K2CO3 (12.5 g,
90.5 mmol) was stirred in 40 mL dry DMF at room
temperature for 30 min. Then propargyl bromide (2.32 g,
24.4 mmol) was added dropwise and reaction mixture was
stirred at room temperature for 7 h. The progress of
reaction was monitored by TLC, and reaction mixture was
extracted with CHCl3 (8 · 30 mL) and H2O (8 · 300 mL).
Synthesis of (2,11-Dioxa-bicyclo[10.3.1]hexadeca-1(16),6,
12,14-tetraene-4,8-diyn-13- ylmethylene)-p-tolyl-amine (13).
Mixture of p-tolylimino-methyl-benzene-1,3-diol (9)
(430 mg, 1.9 mmol) and K2CO3 (2.63 g, 19.1 mmol) in