Journal of the American Chemical Society
Communication
Scheme 3
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental details, characterization data, and NMR spectra
for new compounds. This material is available free of charge via
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by the MOST
(2012CB822102) and NSFC (21302210 and 20921091). We
thank Prof. Jianhua Ju for providing the NMR spectra of the
natural product A201A and helpful discussion.
REFERENCES
■
(1) (a) Isono, K. Pharmacol. Ther. 1991, 52, 269−280. (b) Knapp, S.
Chem. Rev. 1995, 95, 1859−1876.
(2) (a) Kirst, H . A.; Dorman, D. E.; Occolowitz, J. L.; Szymanski, E.
F.; Paschal, J. W. Abstracts of Papers of 16th Interscience Conference on
Antimicrobial Agents and Chemotherapy No. 61, Chicago, IL, Oct 27−
29, 1976; ASM: Washington, DC, 1976. (b) Kirst, H. A.; Dorman, D.
E.; Occolowitz, J. L.; Jones, N. D.; Paschal, J. W.; Hamill, R. L.;
Szymanski, E. F. J. Antibiot. 1985, 38, 575−586. (c) Barrasa, M. I.;
Tercero, J. A.; Lacalle, R. A.; Jimenez, A. Eur. J. Biochem. 1995, 228,
562−569. (d) Barrasa, M. I.; Tercero, J. A.; Jimenez, A. Eur. J. Biochem.
1997, 245, 54−63.
regenerate the gold(I) catalyst; thus, the basic nitrogen atoms
in 19 could intercept the proton in situ and stop the catalytic
cycle.14c,d Therefore, the condensation of 19 and 6 was
promoted with stoichiometric amount of Ph3PAuOTf; the
reaction proceeded smoothly (CH2Cl2, 5 Å MS, 0 °C) to lead
to the desired α-rhamnoside 20 in 55% isolated yield. We have
also tried the glycosylation of 19 with the relevant imidate
donors (i.e., 2-O-benzoyl-3,4-di-O-methyl-D-rhamnopyranosyl
trichloroacetimidate and N-phenyl trifluoroacetimidate).25 Not
surprisingly, under the action of TMSOTf, enol ether 19
underwent decomposition easily, while with BF3·OEt2 as the
promoter, the reaction hardly took place before decomposition.
Finally, the benzoyl group and the four TES groups on 20 were
removed with NaOMe in HOMe/CH2Cl2, furnishing A201A
(1) in 76% yield. By the same token, we also synthesized the E-
isomer of A201A (S28) starting from 13(E).16 The analytical
data of 1 were in full agreement with those obtained for the
natural product.16
Summarizing, the total synthesis of A201A, a unique
nucleoside antibiotic, has been achieved for the fist time in a
total of 47 steps starting from cheap materials, i.e., D-xylose, D-
mannose, D-arabinose, 6-chloro-purine, and α-methyl-p-couma-
ric acid. The synthetic challenge of incorporation/elaboration
of the unique furanoside unit bearing an exocyclic enol ether
moiety has been addressed. The glycosylation of the complex
alcohol (i.e., 19) containing the acid-labile enol ether and basic
nitrogen atoms was realized with the glycosyl ortho-
alkynylbenzoate as donor under the promotion of stoichio-
metric Ph3PAuOTf. Given its highly modular and linear nature,
the present synthesis offers the prospect of being able to access
numerous congeners of A201A and, thus, facilitates in-depth
studies on the biological activities of this unique type of natural
products.
(3) Zhu, Q.; Li, J.; Ma, J.; Luo, M.; Wang, B.; Huang, H.; Tian, X.; Li,
W.; Zhang, S.; Zhang, C.; Ju, J. Antimicrob. Agents Chemother. 2012, 56,
110−114.
(4) (a) Porter, J. N.; Hewitt, R. I.; Hesseltine, C. W.; Krupka, G.;
Lowery, J. A.; Wallace, W. S.; Bohonos, N.; Williams, J. H. Antibiot.
Chemother. 1952, 2, 409−410. (b) Waller, C. W.; Fryth, P. W.;
Hutchings, B. L.; Williams, J. H. J. Am. Chem. Soc. 1953, 75, 2025−
2025.
(5) (a) Pittenger, R. C.; Wolfe, R. N.; Hoehn, M. M.; Marks, P. N.;
Daily, W. A.; McGuire, J. M. Antibiot. Chemother. 1953, 3, 1268−1278.
(b) Mann, R. L.; Gale, R. M.; van Abeele, F. R. Antibiot. Chemother.
1953, 3, 1279−1282. (c) Isono, K.; Yamashita, S.; Tomiyama, Y.;
Suzuki, S. J. Antibiot. 1957, 10, 21−30. (d) Mann, R. L.; Woolf, D. O. J.
Am. Chem. Soc. 1957, 79, 120−126. (e) Wakisaka, Y.; Koizumi, K.;
Nishimoto, Y.; Kobayashi, M.; Tsuji, N. J. Antibiot. 1980, 33, 695−704.
(f) Uyeda, M.; Mizukami, M.; Yokomizo, K.; Suzuki, K. Biosci.
Biotechnol. Biochem. 2001, 65, 1252−1254.
(6) For selected reports, see: (a) Yarmolinsky, M. B.; de la Haba, G.
L. Proc. Natl. Acad. Sci. U.S.A. 1959, 45, 1721−1729. (b) Allen, D. W.;
Zamecnik, P. C. Biochim. Biophys. Acta 1962, 55, 865−874.
(c) Hohsaka, T.; Sato, K.; Sisido, M.; Takai, K.; Yokoyama, S. FEBS
Lett. 1993, 335, 47−50. (d) Starck, S. R.; Qi, X.; Olsen, B. N.; Roberts,
R. W. J. Am. Chem. Soc. 2003, 125, 8090−8091. (e) Okuda, K.; Seila,
A. C.; Strobel, S. A. Tetrahedron 2004, 60, 12101−12112. (f) Kingery,
D. A.; Pfund, E.; Voorhees, R. M.; Okuda, K.; Wohlgemuth, I.;
Kitchen, D. E.; Rodnina, M. V.; Strobel, S. A. Chem. Biol. 2008, 15,
493−500. (g) Mizusawa, K.; Abe, K.; Sando, S.; Aoyama, Y. Bioorg.
Med. Chem. 2009, 17, 2381−2387.
(7) (a) Guerrero, M. C.; Modolell, J. Eur. J. Biochem. 1980, 107,
409−414. (b) Hecker, S. J.; Lilley, S. C.; Minich, M. L.; Werner, K. M.
Bioorg. Med. Chem. Lett. 1993, 3, 295−298.
(8) For selected reports on the synthesis of puromycin derivatives,
see: (a) Baker, B. R.; Schaub, R. E.; Joseph, J. P.; Williams, J. H. J. Am.
Chem. Soc. 1954, 76, 4044−4045. (b) Baker, B. R.; Schaub, R. E.;
Joseph, J. P.; Williams, J. H. J. Am. Chem. Soc. 1955, 77, 12−15.
(c) Robins, M. J.; Miles, R. W.; Samano, M. C.; Kaspar, R. L. J. Org.
4159
dx.doi.org/10.1021/ja501460j | J. Am. Chem. Soc. 2014, 136, 4157−4160