ChemComm
Communication
Chem., Int. Ed., 2008, 47, 3122–3172; (c) M. Melaimi,
M. Soleilhavoupand and G. Bertrand, Angew. Chem., Int. Ed., 2010,
49, 8810–8849.
2 W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1290–1309.
3 R. Tonner, G. Heydenrych and G. Frenking, Chem.–Asian J., 2007, 2,
1555–1567.
Scheme 3 Oxidation of monodeuterated MeOBnOH-d1.
4 For recent examples involving bpy scaffolds, see: (a) D. G. Brown,
N. Sanguantrakun, B. Schulze, U. S. Schubert and C. P. Berlinguette,
J. Am. Chem. Soc., 2012, 134, 12354–12357; (b) V. Leigh, W. Ghattas,
R. Lalrempuia, H. Mu¨ller-Bunz, M. Pryce and M. Albrecht, Inorg.
Chem., 2013, 52, 5395–5402; involving phosphine–NHC hybrids:
(c) A. T. Normand and K. J. Cavell, Eur. J. Inorg. Chem., 2008,
2781–2800; (d) T. E. Schmid, D. C. Jones, O. Songis, O. Diebolt,
M. R. Furst, A. M. Slawin and C. S. Cazin, Dalton Trans., 2013, 42,
7345–7353; involving pincer platforms: (e) M. Poyatos, J. A. Mata and
E. Peris, Chem. Rev., 2009, 109, 3677–3707; ( f ) D. Pugh and A. A.
Danopoulos, Coord. Chem. Rev., 2007, 251, 610–641; (g) E. Peris and
R. H. Crabtree, Coord. Chem. Rev., 2004, 248, 2239–2246; for binap
analogues: (h) P. Gu, J. Zhang, Q. Xu and M. Shi, Dalton Trans., 2013,
42, 13599–13606.
triggered by the high kinetic trans effect of the distal NHC as well as
by re-aromatization of the porphyrin macrocycle and alleviation of
the strain imparted by the methyl substituents of the NHC ligand.
The distorted porphyrin in the bis(carbene) complex 3 may thus be
considered as a spring-loaded system that discharges electronically
and structurally by carbene dissociation and rearomatization.
Attempts to facilitate the formation of the putative five-coordinate
intermediate by the addition of AgBF4 to induce either Clꢀ abstrac-
tion (with 2, entry 5) or carbene transfer (with 3) did not result in any
rate enhancement, pointing towards the role of AgBF4 beyond
simple halide abstraction. A significant kinetic isotope effect
KIE = 2.5 was determined when using the monodeuterated
methoxy-substituted benzyl alcohol MeOBnOH-d1 as a substrate
(Scheme 3), suggesting rate-limiting C–H bond activation.
Interestingly, the catalytic activity of 3 is photochemical
sensitive and an increase in initial catalytic activity was
observed in runs performed with complex 3 under irradiation
(Xe lamp; entry 6). Such photochemical stimulation doubled
the initial performance, and up to 40% conversion was accom-
plished in 0.5 h (cf. 1 h for the same conversion in the dark).† At
higher conversions, the amplification gradually vanishes. Such
synergistic effects of the porphyrin spectator ligand are attrac-
tive and current work is directed towards generalizing this
principle in NHC porphyrin hybrids.
Rhodium porphyrin synthons accommodate up to two api-
cal NHC ligands. The high trans effect of the NHC ligand
enhances the catalytic activity of the rhodium(III) center in
oxidation catalysis. Substoichiometric experiments and reac-
tion profiles demonstrate that the catalytic activity of the
coordinatively saturated bis-NHC complex 3 is imparted by
carbene dissociation. Facile breaking of the (typically strong)
Rh–CNHC bond is promoted by the high trans effect of the distal
NHC ligand and by the distorted and considerably dearomatized
porphyrin. Such sterically and electronically spring-loaded NHC-
porphyrin hybrids are highly attractive for generating novel pre-
catalysts with low activation barriers.
5 (a) S. Richter, A. Hadj-Aissa, C. Taffin, A. van der Lee and D. Leclercq,
Chem. Commun., 2007, 2148–2150; (b) J.-F. Lefebvre, M. Lo,
D. Leclercq and S. Richter, Chem. Commun., 2011, 47, 2976–2978;
¨
(c) M. Albrecht, P. Maji, C. Hausl, A. Monney and H. Mu¨ller-Bunz,
Inorg. Chim. Acta, 2012, 380, 90–95; (d) J. Haumesser, J.-P.
Gisselbrecht, J. Weiss and R. Ruppert, Chem. Commun., 2012, 48,
11653–11655.
6 Handbook of Porphyrin Science, ed. K. M. Kadish, K. M. Smith and
R. Guilard, World Scientific Publishing, Singapore, 2010.
7 K. M. Kadish, C. L. Yao, J. E. Anderson and P. Cocolios, Inorg. Chem.,
1985, 24, 4515–4520.
8 (a) K. J. Cross and M. J. Crossley, Aust. J. Chem., 1992, 45, 991–1004;
(b) M. Gosmann and B. Franck, Angew. Chem., Int. Ed. Engl., 1986,
25, 1100–1101. Deformation and dearomatization decrease ring
current effects: (c) M. Miura, S. A. Majumder, J. D. Hobbs, M. W.
Renner, L. R. Furenlid and J. A. Shelnutt, Inorg. Chem., 1994, 33,
6078–6085.
9 A. M. Voutchkova, L. N. Appelhans, A. R. Chianese and R. H.
Crabtree, J. Am. Chem. Soc., 2005, 127, 17624–17625.
10 (a) J. A. Mata, A. R. Chianese, J. R. Miecznikowski, M. Poyatos,
E. Peris, J. W. Faller and R. H. Crabtree, Organometallics, 2004, 23,
1253–1263; (b) L. Yang, A. Kru¨ger, A. Neels and M. Albrecht,
Organometallics, 2008, 27, 3161–3171; (c) O. V. Zenkina, E. C.
Keske, R. Wang and C. M. Crudden, Angew. Chem., Int. Ed., 2011,
50, 8100–8104. For rhodium(III) TPP complexes with carbanionic
ligands, see: (d) W.-H. Leung, W. Lai and I. D. Williams,
J. Organomet. Chem., 2000, 604, 197–201.
11 Tcoal = 25 1C and krotation = 230 (ꢁ40) sꢀ1 (DG‡ = 59.5 ꢁ 0.5 kJ molꢀ1).
12 W. R. Scheidt and D. M. Chipman, J. Am. Chem. Soc., 1986, 108,
1163–1167.
13 M. G. B. Drew, C. J. Harding, V. McKee, G. G. Morgan and J. Nelson,
J. Chem. Soc., Chem. Commun., 1995, 1035–1038.
14 L. Liu, M. Yu, B. B. Wayland and X. Fu, Chem. Commun., 2010, 46,
6353–6455.
15 (a) S. Gladiali and E. Alberico, Chem. Soc. Rev., 2006, 35, 226–236;
¨
(b) J. S. M. Samec, J.-E. Backvall, P. G. Andersson and P. Brandt,
Chem. Soc. Rev., 2006, 35, 237–248.
16 For precedents, see: (a) M. J. Doyle, M. F. Lappert, P. L. Pye and
P. Terreros, J. Chem. Soc., Dalton Trans., 1984, 2355–2364; (b) H. C.
Martin, N. H. James, J. Aitken, J. A. Gaunt, H. Adams and A. Haynes,
Organometallics, 2003, 22, 4451–4458; (c) D. Allen, C. M. Crudden,
L. A. Calhoun and R. Wang, J. Organomet. Chem., 2004, 689,
3203–3209; (d) V. Lavallo and R. H. Grubbs, Science, 2009, 326,
559–562; (e) B. K. Keitz, J. Bouffard, G. Bertrand and R. H. Grubbs,
J. Am. Chem. Soc., 2011, 133, 8498–8501; ( f ) D. Canseco-Gonzalez,
We thank Johnson Matthey for a generous loan of rhodium.
This work was financially supported by the Irish Research
Council, the ERC, and Science Foundation Ireland.
Notes and references
¨
¨
1 (a) D. Bourissou, O. Guerret, F. P. Gabbaı and G. Bertrand, Chem.
A. Petronilho, H. Muller-Bunz, K. Ohmatsu, T. Ooi and M. Albrecht,
Rev., 2000, 100, 39–92; (b) F. E. Hahn and M. C. Jahnke, Angew.
J. Am. Chem. Soc., 2013, 135, 13193–13203.
3490 | Chem. Commun., 2014, 50, 3488--3490
This journal is ©The Royal Society of Chemistry 2014