1094
S. Demirayak et al. / European Journal of Medicinal Chemistry 39 (2004) 1089–1095
2H, J = 8.32 Hz), 7.83 (d, 1H, J = 8.01 Hz), 7.78 (d, 2H, J
= 8.31 Hz), 7.85 (d, 2H, J = 8.70 Hz), 8.10 (m, 2H), 8.49 (d,
1H, J = 8.27 Hz), 13.05 (s, 1H).
(400 MHz)(DMSO-d6) d (ppm) : 1.44 (t, 3H, J = 7.08 Hz),
2.08 (s, 3H), 2.49 (s, 3H), 2.70 (t, 2H, J = 8.15 Hz), 3.15 (t,
2H, J = 8.11 Hz), 4.15 (t, 2H, J = 5.45 Hz), 4.37 (q, 2H, J
= 7.10 Hz), 4.46 (t, 2H, J = 5.47 Hz), 6.89 (s, 1H), 7.21-7.46
(m, 5H), 7.49 (d, 2H, J = 8.25 Hz), 8.03 (d, 2H, J = 8.25 Hz).
13c IR(KBr)mmax(cm–1) : 1735(Acetyl C=O), 1699(Ester
C=O), 1672(C=O), 1575-1533(C=N, C=C). 1H-NMR
(400 MHz)(DMSO-d6) d (ppm) : 1.48 (t, 3H, J = 7.10 Hz),
2.10 (s, 3H), 2.49 (s, 3H), 2.78 (t, 2H, J = 8.20 Hz), 3.16 (t,
2H, J = 8.22 Hz), 4.15 (t, 2H, J = 5.45 Hz), 4.36 (q, 2H, J
= 7.12 Hz), 4.42 (t, 2H, J = 5.10 Hz), 6.90 (s, 1H), 7.15 (d,
2H, J = 8.50 Hz), 7.30 (d, 2H, J = 8.50 Hz), 7.49 (d, 2H, J
= 8.25 Hz), 8.02 (d, 2H, J = 8.27 Hz).
11a IR(KBr)mmax(cm–1) : 1662(C=O), 1614-1515(C=N,
1
C=C). H-NMR(400 MHz)(DMSO-d6) d (ppm) : 2.14 (s,
6H), 2.69 (t, 2H, J = 8.22 Hz), 3.19 (t, 2H, J = 8.22 Hz), 3.49
(s, 3H), 5.97 (s, 2H), 7.48 (d, 2H, J = 8.54 Hz), 8.05 (d, 2H, J
= 8.54 Hz).
11b IR(KBr)mmax(cm–1) : 1693(Ester C=O), 1658(C=O),
1606-1558(C=N, C=C). 1H-NMR(400 MHz)(CDCl3) d
(ppm) : 1.54 (t, 3H, J = 7.11 Hz), 2.58 (s, 3H), 2.80 (t, 2H, J
= 8.20 Hz), 3.14 (t, 2H, J = 8.17 Hz), 3.60 (s, 3H), 4.49 (q,
2H, J = 7.11 Hz), 6.98 (s, 1H), 7.20 (d, 2H, J = 8.45 Hz),
7.30-7.37 (m, 5H,), 7.92 (d, 2H, J = 8.50 Hz).
13d IR(KBr)mmax(cm–1) : 1739(Acetyl C=O), 1690-
1677(Ester C=O, C=O), 1602-1558(C=N, C=C). 1H-
NMR(400 MHz)(DMSO-d6) d (ppm) : 1.44 (t, 3H, J
= 7.08 Hz), 2.08 (s, 3H), 2.48 (s, 3H), 2.69 (t, 2H, J
= 8.23 Hz), 3.15 (t, 2H, J = 8.21 Hz), 4.14 (t, 2H, J
= 5.45 Hz), 4.38 (q, 2H, J = 7.09 Hz), 4.42 (t, 2H, J
= 5.49 Hz), 6.89 (s, 1H), 7.23 (d, 2H, J = 8.55 Hz), 7.42 (d,
2H, J = 8.55 Hz), 7.49 (d, 2H, J = 8.55 Hz), 8.03 (d, 2H, J
= 8.53 Hz). EI-MS: m/z: 521.83 M+1, 521.07M+, 432.68,
431.54, 334.76, 73.28, 55.38, 43.38 (%100).
11c IR(KBr)mmax(cm–1) : 1697(Ester C=O), 1672(C=O),
1606-1552(C=N, C=C). 1H-NMR(400 MHz)(CDCl3) d
(ppm) : 1.54 (t, 3H, J = 7.11 Hz), 2.58 (s, 3H), 2.79 (t, 2H, J
= 8.23 Hz), 3.14 (t, 2H, J = 8.17 Hz), 3.64 (s, 3H), 4.49 (q,
2H, J = 7.11 Hz), 6.96 (s, 1H), 7.15 (d, 2H, J = 8.53 Hz), 7.30
(d, 2H, J = 8.45 Hz), 7.34 (d, 2H, J = 8.47 Hz), 7.96 (d, 2H, J
= 8.50 Hz). EI-MS: m/z: 449.86 M+1, 448.95 M+, 420.46,
101.21, 41.91 (%100).
12a IR(KBr)mmax(cm–1) : 1643(C=O), 1581-1577(C=N,
1
C=C). H-NMR(400 MHz)(CDCl3) d (ppm) : 2.30 (s, 6H),
13e IR(KBr)mmax(cm–1) : 1735(Acetyl C=O), 1690-
1680(Ester C=O, C=O), 1595-1560(C=N, C=C), 1514,
1342(N=O). 1H-NMR(400 MHz)(DMSO-d6) d (ppm) : 1.45
(t, 3H, J = 7.08 Hz), 2.08 (s, 3H), 2.51 (s, 3H), 2.70 (t, 2H, J
= 8.23 Hz), 3.15 (t, 2H, J = 8.50 Hz), 4.14 (t, 2H, J
= 5.45 Hz), 4.40 (q, 2H, J = 7.15 Hz), 4.42 (t, 2H, J
= 5.42 Hz), 7.17 (s, 1H), 7.47 (d, 2H, J = 8.91 Hz), 7.56 (d,
2H, J = 8.55 Hz) , 8.06 (d, 2H, J = 8.54 Hz), 8.19 (d, 2H, J
= 8.92 Hz).
4.11 (s, 3H), 6.12 (s, 2H), 7.56 (d, 2H, J = 8.44 Hz), 7.88 (d,
2H, J = 8.45 Hz), 7.94-8.00 (m, 3H), 8.72-8.75 (m, 1H).
12b IR(KBr)mmax(cm–1) : 1699(Ester C=O), 1645(C=O),
1585-1519(C=N, C=C). 1H-NMR(400 MHz)(CDCl3) d
(ppm) : 1.59 (t, 3H, J = 7.12 Hz), 2.70 (s, 3H), 4.14 (s, 3H),
4.55 (q, 2H, J = 7.12 Hz), 7.04 (s, 1H), 7.32-7.41 (m, 5H),
7.52 (d, 2H, J = 8.37 Hz), 7.84 (m, 3H), 8.00 (m, 2H), 8.75 (d,
1H, J = 7.72 Hz). EI-MS: m/z: 463.32 M+, 434.11 (%100),
233.17, 189.80, 42.88.
12c IR(KBr)mmax(cm–1): 1697(Ester C=O), 1641(C=O),
1583-1556(C=N, C=C). 1H-NMR(400 MHz)(CDCl3) d
(ppm) : 1.46 (t, 3H, J = 7.10 Hz), 2.58 (s, 3H), 4.10 (s, 3H),
4.42 (q, 2H, J = 7.11 Hz), 6.96 (s, 1H), 7.28 (d, 2H, J
= 8.37 Hz), 7.46 (d, 2H, J = 7.72 Hz), 7.60 (d, 2H, J
= 7.75 Hz), 7.86-8.00 (m, 5H), 8.72-8.75 (m,1H).
4.2. Pharmacology
Male wistar rats between 200 and 300 g were killed by
cervical dislocation. For the endothelium-denuded rings,
segments of thoracic aorta (3–5 mm) were gently rubbed to
remove the endothelium. Using a resting tension of 1 g,
tissues were set up in 10-ml organ baths containing Krebs–
Henseleit solution at 37 °C and bubbled with 95% O2–5%
CO2. To assess phenylephrine (10–6 M) (Sigma, St. Louis,
MO) induced contractions, isometric transducers and
Gemini recorders (Ugo Basile, Varese, Italy) were used for
recording organ responses [40]. Rings of aorta were precon-
tracted with phenylephrine (Phe) (10–6 M) and exposed to
acetylcholine (ACh) (10–6 M) to test endothelium-dependent
relaxations (EDR) [41]. Test material was dissolved in
DMSO. Compounds were applied to the organ bath at a
concentration of 10–4 M.
5.1. 2-(2-Acetyloxyethyl)-6-(4’-substituted pyrrol-1-yl)
phenyl-4,5-dihydro-3(2H)-pyridazinones 13
A mixture of 7 (10 mmol) and an appropriate 8 (10 mmol)
was refluxed in acetic acid for 45 min then excess acetic
anhydrite was added and heated for 15 min. The reaction
mixture was poured into ice water. The precipitate formed
was filtered and crystallised from diethyl ether–ethanol mix-
ture.
13a IR(KBr)mmax(cm–1)
:
1739(Acetyl C=O),
1
1670(C=O), 1541-1516(C=N, C=C). H-NMR(400 MHz)
(CDCl3) d (ppm) : 2.10 (s, 3H), 2.20 (s, 6H), 2.70 (t, 2H, J
= 8.12 Hz), 3.15 (t, 2H, J = 8.16 Hz), 4.14 (t, 2H, J
= 5.65 Hz). 4.42 (t, 2H, J = 5.69 Hz), 6.16 (s, 2H), 7.47 (d,
2H, J = 8.32 Hz), 8.05 (d, 2H, J = 8.37 Hz).
Systolic blood pressure was measured in conscious rats
using Tail–Cuff method [42]. Wistar rats (body weight 200–
250 g) were used in the present study. Rats were assigned to
groups of five animals each. The compounds were dissolved
in DMSO. The compounds at the dose level of 20 mg/kg
body weight were injected intraperitoneally. The Tail–Cuff
13b IR(KBr)mmax(cm–1) : 1741(Acetyl C=O), 1695(Ester
C=O), 1672(C=O), 1604-1558(C=N, C=C). 1H-NMR