ChemComm
Communication
Table 3 Scope of aliphatic amides in Ni-catalyzed b-C(sp3)–H bond
40, 1937; (i) P. B. Arockiam, C. Bruneau and P. H. Dixneuf,
Chem. Rev., 2012, 112, 5879; ( j) D. Y.-K. Chen and S. W. Youn,
Chem.–Eur. J., 2012, 18, 9452; (k) J. Yamaguchi, A. D. Yamaguchi and
K. Itami, Angew. Chem., Int. Ed., 2012, 51, 8960.
arylationa
2 For selected reviews, see: (a) R. Jazzar, J. Hitce, A. Renaudat,
J. Sofack-Kreutzer and O. Baudoin, Chem.–Eur. J., 2010, 16, 2654;
(b) O. Baudoin, Chem. Soc. Rev., 2011, 40, 4902; (c) H. Li, B.-J. Li and
Z.-J. Shi, Catal. Sci. Technol., 2011, 1, 191.
3 For selected examples of palladium-catalyzed C(sp3)–H bond activa-
tion, see: (a) V. G. Zaitsev, D. Shabashov and O. Daugulis, J. Am.
Chem. Soc., 2005, 127, 13154; (b) M. Lafrance, S. I. Gorelsky and
K. Fagnou, J. Am. Chem. Soc., 2007, 129, 14570; (c) L.-C. Campeau,
D. J. Schipper and K. Fagnou, J. Am. Chem. Soc., 2008, 130, 3266;
(d) D. Shabashov and O. Daugulis, J. Am. Chem. Soc., 2010, 132, 3965;
(e) W. R. Gutekunst and P. S. Baran, J. Am. Chem. Soc., 2011, 133,
19076; ( f ) M. Wasa, K. M. Engle, D. W. Lin, E. J. Yoo and J.-Q. Yu,
J. Am. Chem. Soc., 2011, 133, 19598; (g) G. He and G. Chen, Angew.
Chem., Int. Ed., 2011, 50, 5192; (h) M. Nakanishi, D. Katayev,
C. Besnard and E. P. Ku¨ndig, Angew. Chem., Int. Ed., 2011,
50, 7438; (i) M. Wasa, K. S. L. Chan, X.-G. Zhang, J. He, M. Miura
and J.-Q. Yu, J. Am. Chem. Soc., 2012, 134, 18570; ( j) L. D. Tran and
O. Daugulis, Angew. Chem., Int. Ed., 2012, 51, 5188; (k) S. Aspin,
A.-S. Goutierre, P. Larini, R. Jazzar and O. Baudoin, Angew. Chem.,
a
Conditions: Ni(OTf)2 (10 mol%), PPh3 (20 mol%), Na2CO3 (2.0 equiv.),
PivOH (0.2 equiv.), DMSO (3.5 equiv.), amide 1 (0.2 mmol), and 1-iodo-
4-methoxybenzene 2a (3.0 equiv.) in dry 1,4-dioxane (1 mL) at 160 1C for
Int. Ed., 2012, 51, 10808; (l) M. Fan and D. Ma, Angew. Chem., Int.
´
36 h. Isolated yields. b 2a (2.0 equiv.) for 24 h. 2-Nitrobenzoic acid instead
c
´
Ed., 2013, 52, 12152; (m) N. Rodrıguez, J. A. Romero-Revilla, M. A.
of PivOH was used. At 150 1C. e 2a (4.0 equiv.).
d
´
´˜
Fernandez-Ibanez and J. C. Carretero, Chem. Sci., 2013, 4, 175;
(n) A. Millet, P. Larini, E. Clot and O. Baudoin, Chem. Sci., 2013,
4, 2241.
4 For selected examples of other metal-catalyzed C(sp3)–H bond
arylation, see: (a) S. J. Pastine, D. V. Gribkov and D. Sames, J. Am.
Chem. Soc., 2006, 128, 14220; (b) G. Deng, L. Zhao and C.-J. Li,
Angew. Chem., Int. Ed., 2008, 47, 6278; (c) Y.-Z. Li, B.-J. Li, X.-Y. Lu,
S. Lin and Z.-J. Shi, Angew. Chem., Int. Ed., 2009, 48, 3817; (d) N. Yoshikai,
A. Mieczkowski, A. Matsumoto, L. Ilies and E. Nakamura, J. Am. Chem.
Soc., 2010, 132, 5568; (e) N. Dastbaravardeh, M. Schnu¨rch and
M. D. Mihovilovic, Org. Lett., 2012, 14, 3792; ( f ) R. Shang, L. Ilies,
A. Matsumoto and E. Nakamura, J. Am. Chem. Soc., 2013, 135, 6030.
5 (a) J. Yamaguchi, K. Muto and K. Itami, Eur. J. Org. Chem., 2013, 19;
(b) Y. Nakao, E. Morita, H. Idei and T. Hiyama, J. Am. Chem. Soc.,
2011, 133, 3264; (c) H. Shiota, Y. Ano, Y. Aihara, Y. Fukumoto and
N. Chatani, J. Am. Chem. Soc., 2011, 133, 14952; (d) Y. Aihara and
N. Chatani, J. Am. Chem. Soc., 2013, 135, 5308; (e) X. Wu, Y. Zhao and
H. Ge, J. Am. Chem. Soc., 2014, 136, 1789.
6 S. Ge and J. F. Hartwig, J. Am. Chem. Soc., 2011, 133, 16330.
7 D. Liu, C. Liu, H. Li and A. Lei, Angew. Chem., Int. Ed., 2013, 52, 4453.
8 For selected reviews and highlights, see: (a) G. Rouquet and
N. Chatani, Angew. Chem., Int. Ed., 2013, 52, 11726; (b) M. Corbet
and F. D. Campo, Angew. Chem., Int. Ed., 2013, 52, 9896.
9 K. Li, G. Tan, J. Huang, F. Song and J. You, Angew. Chem., Int. Ed.,
2013, 52, 12942.
with aryl iodides via bidentate chelation-assistance of an
8-aminoquinoline moiety. Besides aryl iodides, aryl bromides
are also capable of undergoing the cross-coupling reactions to a
certain extent. Further studies to extend the scope and clarify
the detailed mechanism11 are ongoing in our laboratory.
We thank the National Basic Research Program of China
(973 Program, 2011CB808601), and the National NSF of China
(No. 21272160, 21025205, and 21321061) for financial support.
Notes and references
1 For selected reviews on transition metal-catalyzed C–C bond forma-
tion via C–H bond cleavages, see: (a) X. Chen, K. M. Engle, D.-H.
Wang and J.-Q. Yu, Angew. Chem., Int. Ed., 2009, 48, 5094;
(b) D. A. Colby, R. G. Bergman and J. A. Ellman, Chem. Rev., 2010,
110, 624; (c) C. C. C. Johansson and T. J. Colacot, Angew. Chem.,
Int. Ed., 2010, 49, 676; (d) L. Ackermann, Chem. Commun., 2010,
46, 4866; (e) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111,
1215; ( f ) L. Ackermann, Chem. Rev., 2011, 111, 1315; (g) C. Liu, 10 Y. Aihara and N. Chatani, J. Am. Chem. Soc., 2014, 136, 898.
H. Zhang, W. Shi and A. Lei, Chem. Rev., 2011, 111, 1780; 11 Although the detailed mechanism is not clear at this stage, a plausible
(h) S.-Y. Zhang, F.-M. Zhang and Y.-Q. Tu, Chem. Soc. Rev., 2011,
catalytic cycle is proposed in ESI† (Scheme S1).
3946 | Chem. Commun., 2014, 50, 3944--3946
This journal is ©The Royal Society of Chemistry 2014