Journal of the American Chemical Society
Article
(6) For examples of the catalytic asymmetric synthesis of other
families of tertiary alkyl fluorides, see: (a) Phipps, R. J.; Hiramatsu, K.;
Toste, F. D. J. Am. Chem. Soc. 2012, 134, 8376−8379. (b) Shunatona,
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures and compound characterization data.
This material is available free of charge via the Internet at
H. P.; Fruh, N.; Wang, Y.-M.; Rauniyar, V.; Toste, F. D. Angew. Chem.,
̈
Int. Ed. 2013, 52, 7724−7727. (c) Wu, J.; Wang, Y.-M.; Drljevic, A.;
Rauniyar, V.; Phipps, R. J.; Toste, F. D. Proc. Natl. Acad. Sci. U.S.A.
2013, 110, 13729−13733.
AUTHOR INFORMATION
(7) For examples of methods for the synthesis of racemic products,
see: (a) Wang, W.; Jasinski, J.; Hammond, G. B.; Xu, B. Angew. Chem.,
Int. Ed. 2010, 49, 7247−7252. (b) Guo, Y.; Tao, G.-H.; Blumenfeld,
A.; Shreeve, J. M. Organometallics 2010, 29, 1818−1823. (c) Zhang,
W.; Hu, J. Adv. Synth. Catal. 2010, 352, 2799−2804. (d) Guo, C.;
Wang, R.-W.; Guo, Y.; Qing, F.-L. J. Fluorine Chem. 2012, 133, 86−96.
(8) For a pioneering study, although with limited scope with regard
to the diversity of product structures, see: Shibatomi, K.; Futatsugi, K.;
Kobayashi, F.; Iwasa, S.; Yamamoto, H. J. Am. Chem. Soc. 2010, 132,
5625−5627.
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Support has been provided by the National Institutes of Health
(National Institute of General Medical Sciences: R01-GM62871).
We thank Trixia M. Buscagan, Dr. Nathan D. Schley, Dr. Michael
K. Takase (X-ray Crystallography Facility; a Bruker KAPPA
APEX II X-ray diffractometer was purchased via NSF CRIF:MU
award CHE-0639094 to the California Institute of Technology),
and Dr. Scott C. Virgil (Caltech Center for Catalysis and
Chemical Synthesis, supported by the Gordon and Betty Moore
Foundation) for assistance.
(9) For an example with esters, see: Tengeiji, A.; Shiina, I. Molecules
2012, 17, 7356−7378.
(10) For a few examples and leading references, see: (a) Do, H.-Q.;
Chandrashekar, E. R. R.; Fu, G. C. J. Am. Chem. Soc. 2013, 135,
16288−16291. (b) Wilsily, A.; Tramutola, F.; Owston, N. A.; Fu, G. C.
J. Am. Chem. Soc. 2012, 134, 5794−5797. (c) Lou, S.; Fu, G. C. J. Am.
Chem. Soc. 2010, 132, 1264−1266. (d) Lundin, P. M.; Esquivias, J.; Fu,
G. C. Angew. Chem., Int. Ed. 2009, 48, 154−156. (e) Dai, X.; Strotman,
N. A.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 3302−3303.
(11) For an example of an application in the total synthesis of a
natural product (carolacton), see: Schmidt, T.; Kirschning, A. Angew.
Chem., Int. Ed. 2012, 51, 1063−1066.
REFERENCES
■
(1) For monographs, see: (a) Fluorine in Pharmaceutical and
Medicinal Chemistry; Gouverneur, V., Muller, K., Eds.; Imperial
̈
(12) For nonenantioselective nickel-catalyzed cross-couplings of
geminal dihalides (double and triple alkylation of CH2Cl2 and CHCl3,
respectively), see: (a) Csok, Z.; Vechorkin, O.; Harkins, S. B.;
Scopelliti, R.; Hu, X. J. Am. Chem. Soc. 2008, 130, 8156−8157.
(b) Vechorkin, O.; Csok, Z.; Scopelliti, R.; Hu, X. Chem.Eur. J.
2009, 15, 3889−3899.
(13) For a recent overview, see: Cahard, D.; Bizet, V. Chem. Soc. Rev.
2014, 43, 135−147.
(14) For a review, see: Negishi, E.-i.; Hu, Q.; Huang, Z.; Wang, G.;
Yin, N. In The Chemistry of Organozinc Compounds; Rappoport, Z.,
Marek, I., Eds.; Wiley: New York, 2006; Chapter 11.
College Press: London, 2012. (b) Fluorine-Related Nanoscience with
Energy Applications; Nelson, D. J., Brammer, C. N., Eds.; American
Chemical Society: Washington, DC, 2011. (c) Fluorine in Medicinal
Chemistry and Chemical Biology; Ojima, I., Ed.; John Wiley & Sons:
Chichester, UK, 2009.
(2) For monographs, see: (a) Efficient Preparations of Fluorine
Compounds; Roesky, H. W., Ed.; John Wiley & Sons: Hoboken, NJ,
2013. (b) Science of Synthesis; Percy, J. M., Ed.; Georg Thieme:
Stuttgart, Germany, 2006; Vol. 34.
(3) For reviews, see: (a) Gouverneur, V.; Lozano, O. In Science of
Synthesis; De Vries, J. G., Molander, G. A., Evans, P. A., Eds.; Georg
Thieme: Stuttgart, Germany, 2011; Vol. 3, pp 851−930. (b) Valero,
(15) Tarui, A.; Kondo, S.; Sato, K.; Omote, M.; Minami, H.; Miwa,
Y.; Ando, A. Tetrahedron 2013, 69, 1559−1565.
G.; Companyo,
́
X.; Rios, R. Chem.Eur. J. 2011, 17, 2018−2037.
(c) Cahard, D.; Xu, X.; Couve-Bonnaire, S.; Pannecoucke, X. Chem.
Soc. Rev. 2010, 39, 558−568. (d) Lectard, S.; Hamashima, Y.; Sodeoka,
M. Adv. Synth. Catal. 2010, 352, 2708−2732. See also: Liang, T.;
Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214−
8264.
(16) Under our standard conditions: (a) On a gram-scale, the
asymmetric Negishi cross-coupling illustrated in entry 2 of Table 2
furnished the desired tertiary alkyl fluoride in 97% ee and 66% yield
(1.41 g of product). (b) Hydrodebromination of the electrophile was a
side reaction (the secondary alkyl fluoride was produced in <5% ee).
(c) During the course of a cross-coupling, no kinetic resolution of the
electrophile was detected (<5% ee), and the ee of the product was
constant. (d) The cross-coupling product was stable (no further
reaction and no erosion in ee). (e) A cyclic ketone (α-tetralone-
derived) and a 2-thienyl ketone were not suitable electrophiles.
(17) A ketone in which the aromatic group (Ar) was mesityl did not
undergo cross-coupling under our standard conditions.
(4) For early examples of catalytic, asymmetric α-fluorinations of
aldehydes, see: (a) Marigo, M.; Fielenbach, D.; Braunton, A.;
Kjærsgaard, A.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44,
3703−3706. (b) Steiner, D. D.; Mase, N.; Barbas, C. F., III. Angew.
Chem., Int. Ed. 2005, 44, 3706−3710. (c) Beeson, T. D.; MacMillan, D.
W. C. J. Am. Chem. Soc. 2005, 127, 8826−8828.
(5) For examples of methods with some generality, see: (a) Shibata,
N.; Kohno, J.; Takai, K.; Ishimaru, T.; Nakamura, S.; Toru, T.;
Kanemasa, S. Angew. Chem., Int. Ed. 2005, 44, 4204−4207.
(b) Nakamura, M.; Hajra, A.; Endo, K.; Nakamura, E. Angew. Chem.,
Int. Ed. 2005, 44, 7248−7251. (c) Hamashima, Y.; Suzuki, T.; Takano,
H.; Shimura, Y.; Sodeoka, M. J. Am. Chem. Soc. 2005, 127, 10164−
(18) For an example of a nickel-catalyzed cross-coupling of an
unactivated alkyl chloride, see ref 10b.
(19) For a review of nickel-catalyzed cross-couplings that proceed via
cleavage of a C−O bond, see: Rosen, B. M.; Quasdorf, K. W.; Wilson,
D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev.
2011, 111, 1346−1416.
(20) For a recent report of nickel-catalyzed cross-couplings of aryl
fluorides, see: Tobisu, M.; Xu, T.; Shimasaki, T.; Chatani, N. J. Am.
Chem. Soc. 2011, 133, 19505−19511.
(21) Our standard conditions were not effective for the cross-
coupling of a thienylzinc reagent or a Knochel-type arylzinc reagent:
Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Angew.
Chem., Int. Ed. 2006, 45, 6040−6044.
́
́
10165. (d) Belanger, E.; Cantin, K.; Messe, O.; Tremblay, M.; Paquin,
J.-F. J. Am. Chem. Soc. 2007, 129, 1034−1035. (e) Reddy, D. S.;
Shibata, N.; Nagai, J.; Nakamura, S.; Toru, T.; Kanemasa, S. Angew.
Chem., Int. Ed. 2008, 47, 164−168. (f) Ishimaru, T.; Shibata, N.;
Horikawa, T.; Yasuda, N.; Nakamura, S.; Toru, T.; Shiro, M. Angew.
Chem., Int. Ed. 2008, 47, 4157−4161. (g) Wu, L.; Falivene, L.; Drinkel,
E.; Grant, S.; Linden, A.; Cavallo, L.; Dorta, R. Angew. Chem., Int. Ed.
2012, 51, 2870−2873. (h) Phipps, R. J.; Toste, F. D. J. Am. Chem. Soc.
2013, 135, 1268−1271.
5523
dx.doi.org/10.1021/ja501815p | J. Am. Chem. Soc. 2014, 136, 5520−5524