JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
14 S. W. Thomas, G. D. Joly, T. M. Swager, Chem. Rev. 2007,
107, 1339–1386.
507 nm and emission maximum at 593 nm. The optical proper-
ties show obvious solvent-dependency. Aqueous solutions of
PSDPPPV and PSDPPPE respectively exhibit their absorption
maximum at 547nm and 522nm which show a notable red shift
compared to their DMSO solutions. The emission of PSDPPPV
and PSDPPPE both show remarkable fluorescence quenching in
aqueous solution. PSDPPPV exhibits no fluorescence, but the
intrinsic emission at 668 nm in aqueous solution appears by
addition of PVP. PSDPPPE shows the emission maximum at
636 nm in aqueous solution which also has a large red shift
compared to its DMSO solution. Furthermore, the addition of
cationic surfactant CTAB and polymer nonionic surfactant PVP
can effectively increase the emission intensity of their aqueous
solution in a certain range. Fluorescence enhancement caused
by PVP shows linear response with the increasing concentra-
tion of PVP and provides a controllable method to enhance the
fluorescence of DPP-based conjugate polyelectrolytes in aque-
ous phase. This strategy could make the polymers be water
soluble conjugated polymer materials with red light emitting.
Finally, these two polymers have favourable coverage of the
visible light region and this property suggests they are promis-
ing material in applications of self-assembly solar cells.
15 J. H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao, U.
Scherf, A. J. Heeger, G. C. Bazan, J. Am. Chem. Soc. 2011, 133,
8416–8419.
16 T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F.
Huang, X. Gong, Energy Environ. Sci. 2012, 5, 8208–8214.
17 L. Chen, D. W. McBranch, H.-L. Wang, R. Helgeson, F. Wudl,
D. G. Whitten, Proc. Natl. Acad. Sci. USA 1999, 96, 12287–
12292.
18 .S. Kumaraswamy, T. Bergstedt, X. Shi, F. Rininsland, S.
Kushon, W. Xia, K. Ley, K. Achyuthan, D. McBranch, D.
Whitten, T. J. Meyer, Proc. Natl. Acad. Sci. USA 2004, 101,
7511–7515.
19 J. H. Wosnick, C. M. Mello, T. M. Swager, J. Am. Chem.
Soc. 2005, 127, 3400–3405.
20 Y.-M. Chang, C.-Y. Leu, J. Mater. Chem. A 2013, 1, 6446–
6451.
21 A. Kumar, G. Pace, A. A. Bakulin, J. Fang, P. K. H. Ho, W. T.
S. Huck, R. H. Frienda, N. C. Greenham, Energy Environ. Sci.
2013, 6, 1589–1596.
22 Q. Bricaud, R. M. Fabre, R. N. Brookins, K. S. Schanze, J. R.
Reynolds, Langmuir 2011, 27, 5021–5028.
23 P. Taranekar, Q. Qiao, H. Jiang, I. Ghiviriga, K. S. Schanze,
J. R. Reynolds, J. Am. Chem. Soc. 2007, 129, 8958–5959.
ACKNOWLEDGMENTS
24 J. K. Mwaura, M. R. Pinto, D. Witker, N. Ananthakrishnan, K.
S. Schanze, J. R. Reynolds, Langmuir 2005, 21, 10119–10126.
This work is financially supported by the “Shuangzhi” project
of Sichuan Agricultural University (No. 00770105).
25 Y. Zhang, Y. Yang, C.-C. Wang, B. Sun, Y. Wang, X.-Y.
Wang, Q.-D. Shen, J. Appl. Polym. Sci. 2008, 110, 3225–3233.
26 J. Roncali, Chem. Rev. 1997, 97, 173–205.
27 R. C. Advincula, J. Am. Chem. Soc. 2011, 133, 5622.
28 O. Wallquist, R. Lenz, Macromol. Symp. 2002, 187, 617–629.
REFERENCES AND NOTES
1 H. Jiang, P. Taranekar, J. R. Reynolds, K. S. Schanze, Angew.
Chem. Int. Ed. 2009, 48, 4300–4316.
29 D. Cao, Q. Liu, W. Zeng, S. Han, J. Peng, S. Liu, Macromole-
cules 2006, 39, 8347–8355.
2 A. T. Marques, S. M. A. Pinto, C. J. P. Monteiro, J. S. S.
Melo, H. D. Burrows, U. Scherf, M. J. F. Calvete, M. M. Pereira,
J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 1408–1417.
30 D. Cao, Q. Liu, W. Zeng, S. Han, J. Peng, S. Liu, J. Polym.
Sci. Part A: Polym. Chem. 2006, 44, 2395–2405.
31 A. R. Rabindranath, Y. Zhu, I. Heim, B. Tieke, Macromole-
cules 2006, 39, 8250–8256.
3 M. R. Pinto, K. S. Schanze, Synthesis 2002, 2002, 1293–
1309.
32 Y. Zhu, I. Heim, B. Tieke, Macromol. Chem. Phys. 2006, 207,
4 J. J. Lavigne, D. L. Broughton, J. N. Wilson, B. Erdogan,
U. H. F. Bunz, Macromolecules 2003, 36, 7409–7412.
2206–2214.
33 Y. Zhu, A. R. Rabindranath, T. Beyerlein, B. Tieke, Macromo-
lecules 2007, 40, 6981–6989.
€
5 A. F. Thunemann, Langmuir 2001, 17, 5098–5102.
6 M. E. H. Heeley, J. K. Gallaher, T. L. Nguyen, H. Y. Woo,
J. M. Hodgkiss, Chem. Commun. 2013, 49, 4235–4237.
34 K. Zhang, B. Tieke, Macromolecules 2008, 41, 7287–7295.
35 K. Liu, Y. Li, M. Yang, J. Appl. Polym. Sci. 2009, 111, 1976–
1984.
7 G. K. V. V. Thalluri, J.-C. Bolsee, A. Gadisa, M. Parchine, T.
Boonen, J. D’Haen, A. E. Boyukbayram, J. Vandenbergh, T. J.
Cleij, L. Lutsen, D. Vanderzande, J. Manca, Sol. Energ. Mater.
Sol. C. 2011, 95, 3262–3268.
36 G. Zhang, H. Xu, K. Liu, Y. Li, L. Yang, M. Yang, Synth. Met.
2010, 160, 1945–1952.
37 Z. Wu, B. Fan, A. Li, F. Xue, J. Ouyang, Org. Electron. 2011,
12, 993–1002.
8 K. Zilberberg, A. Behrendt, M. Kraft, U. Scherf, T. Riedl, Org.
Electron. 2013, 14, 951–957.
38 S. Qu, H. Tian, Chem. Commun. 2012, 48, 3039–3051.
9 Z. B. Henson, Y. Zhang, T.-Q. Nguyen, J. H. Seo, G. C. Bazan,
J. Am. Chem. Soc. 2013, 135, 4163–4166.
39 S. Lin, S. Liu, H. Zou, W. Zeng, L. Wang, R. Beuerman, D. Cao,
J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 3882–3889.
10 Z. Gu, Y.-J. Bao, Y. Zhang, M. Wang, Q.-D. Shen, Macromo-
lecules 2006, 39, 3125–3131.
40 F. Guo, S. Qu, W. Wu, J. Li, W. Ying, J. Hua, Synth. Met.
2010, 160, 1767–1773.
41 M. Behnke, B. Tieke, Langmuir 2002, 18, 3815–3821.
11 J.-M. Kang, H.-J. Cho, J. Lee, J.-I. Lee, S.-K. Lee, N.-S. Cho,
D.-H. Hwang, H.-K. Shim, Macromolecules 2006, 39, 4999–5008.
42 T. V. Pho, P. Zalar, A. Garcia, T.-Q. Nguyen, F. Wudl, Chem.
Commun. 2010, 46, 8210–8212.
12 M. Yu, L. Liu, S. Wang, J. Polym. Sci. Part A: Polym. Chem.
2008, 46, 7462–7472.
43 J. L. Burmeister, F. Basolo, Inorg. Chem. 1964, 3, 1587–1593.
13 T. Zhang, H. Fan, J. Zhou, Q. Jin, J. Polym. Sci. Part A:
Polym. Chem. 2009, 47, 3056–3065.
44 D. A. M. Egbe, H. Tillmann, E. Birckner, E. Klemm, Macro-
mol. Chem. Phys. 2001, 202, 2712–2726.
750
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2014, 52, 739–751