Paper
Organic & Biomolecular Chemistry
IR (cm−1): 3021, 2973, 2877, 1720, 1615, 1585; 1H NMR and standard error of the mean ( SEM). Data were analysed
(400 MHz, CDCl3) δ 7.41 (t, J = 7.7 Hz, 2H), 7.34 (d, J = 7.3 Hz, using analysis of variance (ANOVA) followed by Tukey’s
2H), 7.31–7.23 (m, 1H), 6.92 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 8.0 multiple comparative test. Statistical significance was set at the
Hz, 1H), 5.30 (d, J = 7.1 Hz, 1H), 4.34 (d, J = 15.5 Hz, 1H), 4.11 p < 0.05 level.
(dd, J = 12.6, 3.9 Hz, 1H), 3.91 (d, J = 15.5 Hz, 1H), 3.79 (s, 3H),
3.72 (dd, J = 12.7, 4.8 Hz, 1H), 2.94 (dd, J = 20.0, 13.3 Hz, 3H),
1.00 (s, 9H), 0.20 (s, 3H), 0.13 (s, 3H); 13C NMR (100 MHz,
CDCl3) 172.6, 150.2, 144.5, 141.3, 134.8, 131.8, 129.2 (2C),
Acknowledgements
126.9, 126.5 (2C), 114.7, 110.5, 72.5, 71.7, 68.8, 55.2, 43.5, 32.0, NDT thanks DST, New Delhi, India (fast-track grant no. SR/FT/
25.8 (3C), 18.5, −4.2, −4.4; mass (ES): m/z 462.20 (M + Na, CS-005/2010) for financial support. The authors thank DRILS
100%), 440.22 (M + H, 10%), 289.16 (80%); HRMS (ESI): calcd for analytical support.
for C25H33NO4 NaSi (M + Na)+ 462.2076, found 462.2060.
A typical procedure for the removal of tert-butyldimethylsilyloxy
group of compound 8c. To a solution of 4-(5-(tert-butyldimethyl-
silyloxy)-6-methoxy-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-
Notes and references
1-yl) benzonitrile (8c) (1 mmol) in dry THF (5 mL) was added
tetra-butyl ammonium iodide (1.5 mmol) at 0 °C. The reaction
mixture was stirred at the same temperature for 0.5 h, and
THF was removed under high vacuum followed by extraction
with DCM (2 × 10 mL). The combined DCM layer was
collected, dried over anhydrous Na2SO4, filtered and concen-
trated. The residue was purified using column chromatography
over silica gel to give the product 4-(5-hydroxy-6-methoxy-
3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-1-yl)benzonitrile
(15) as a white solid; mp 180 °C; yield (88%), Rf = 0.2 (1 : 9
EtOAc–Hex); IR (cm−1): 3430, 3256, 3060, 2973, 2868, 2205,
1 M. Sutharchanadevi and R. Muragan, in Comprehensive
Heterocyclic Chemistry II, ed. A. R. Katritzky, C. W. Rees and
E. F. V. Scriven, Pergamon Press, Oxford, UK, 1996, vol. 3,
pp. 221–260.
2 For selected examples, see: (a) J. W. Bode, N. Fraefel,
D. Muri and E. M. Carreira, Angew. Chem., Int. Ed., 2001,
40, 2082; (b) A. R. Minter, A. A. Fuller and A. K. Mapp,
J. Am. Chem. Soc., 2003, 125, 6846; (c) A. A. Fuller, B. Chen,
A. R. Minter and A. K. Mapp, J. Am. Chem. Soc., 2005, 127,
5376; (d) T. J. Maimone, J. Shi, S. Ashida and P. S. Baran,
J. Am. Chem. Soc., 2009, 131, 17066.
3 M. Pal, S. Angaru, A. Kodimuthali and N. Dhingra, Curr.
Pharm. Des., 2009, 15, 1008.
4 A. Padwa, in Comprehensive Organic Synthesis, ed.
B. M. Trost and I. Fleming, Pergamon Press, Oxford, UK,
1991, vol. 4, pp. 1069–1168.
5 (a) G. S. Lemen, N. C. Giampietro, M. B. Hay and
J. P. Wolfe, J. Org. Chem., 2009, 74, 2533; (b) D. Bonne,
L. Salat, J.-P. Dulcère and J. Rodriguez, Org. Lett., 2008, 10,
5409; (c) J. Peng, D. Jiang, W. Lin and Y. Chen, Org. Biomol.
Chem., 2007, 5, 1391; (d) M. B. Hay and J. P. Wolfe, Angew.
Chem., Int. Ed., 2007, 46, 6492; (e) D. A. Evans, H. J. Song
and K. R. Fandrick, Org. Lett., 2006, 8, 335.
1
1620, 1555, 1486, 1276; H NMR (400 MHz, CDCl3) δ 7.58 (d,
J = 8.9 Hz, 2H), 7.19 (d, J = 8.9 Hz, 2H), 6.93 (d, J = 8.1 Hz, 1H),
6.84 (d, J = 8.2 Hz, 1H), 5.67 (s, 1H), 5.35 (d, J = 7.6 Hz, 1H),
4.10–4.05 (m, 1H), 3.98–3.85 (m, 4H), 3.56–3.48 (m, 1H),
3.30–3.22 (m, 1H), 3.03 (dd, J = 16.9, 3.1 Hz, 1H); 13C NMR
(100 MHz, CDCl3) δ 154.0, 146.6, 141.4, 134.5 (2C), 133.4,
128.6, 119.5, 116.1, 114.0 (2C), 110.7, 103.8, 75.0, 74.6, 56.4,
46.7, 34.2, 29.7; Mass (ES): m/z 309.13 (M + H 100%).
For the spectral data of other compounds synthesized e.g.
16–17 and 19–28, see ESI.†
Biology
6 (a) V. Nair and T. D. Suja, Tetrahedron, 2007, 63, 12247;
(b) K. P. Kaliappan, P. Das and N. Kumar, Tetrahedron Lett.,
2005, 46, 3037; (c) F. Heaney, J. Fenlon, P. McArdle and
D. Cunningham, Org. Biomol. Chem., 2003, 1122;
(d) E. Frank, J. Wölfling, B. Aukszi, V. König,
T. R. Schneider and G. Schneider, Tetrahedron, 2002, 58,
6843; (e) G. Broggini, C. L. Rosa, T. Pilati, A. Terraneo and
G. Zecchi, Tetrahedron, 2001, 57, 8323; (f) T. K. M. Shing
and Y. L. Zhong, Tetrahedron, 2001, 57, 1573.
7 (a) J. H. Jeong and S. M. Weinreb, Org. Lett., 2006, 8, 2309;
(b) P. J. Chua, B. Tan, L. Yang, X. Zeng, D. Zhu and
G. Zhong, Chem. Commun., 2010, 46, 7611.
8 (a) S. Moutel, M. Shipman, O. R. Martin, K. Ikeda and
N. Asano, Tetrahedron: Asymmetry, 2005, 16, 487;
(b) P. J. Dransfield, S. Moutel, M. Shipman and V. Sik,
J. Chem. Soc., Perkin Trans. 1, 1999, 3349; (c) P. Pádár,
A. Bokros, G. Paragi, P. Forgo, Z. Kele, N. M. Howarth and
L. Kovács, J. Org. Chem., 2006, 71, 8669.
Evaluation of test compounds in the zebrafish model of
anxiety
Materials and methods. Wild type zebrafish (Danio rerio)
were maintained as per the procedure reported earlier.16 The
studies on anxiety assessment using the light/dark box para-
digm were conducted based on the parameters of percentage
time spent in light, duration of erratic movements and the
number of erratic movements from the published protocol.14
Drug administration was carried out by a procedure reported
earlier.17 Clonidine, an anxiolytic agent, was used as a positive
control to ascertain the validity of the experiments. Evaluation
was conducted in three parts: (a) screening of capsaicin for
assessment of its anxiogenic activity in adult zebrafish, (b)
screening of test compounds at a single dose to identify the
most potent anxiogenic agent, and (c) multi-dose studies on
the most potent agent to verify anxiogenic activity.
Statistical analysis. Statistical analysis was performed using
GraphPad Prism software. Data were represented using mean
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2014