2016
Organometallics 2005, 24, 2016-2019
Electron-Poor Pentafluorophenyl-Substituted
PCP-Palladium Pincer Complexes
Preston A. Chase,† Marcella Gagliardo,† Martin Lutz,‡ Anthony L. Spek,‡,§
Gerard P. M. van Klink,† and Gerard van Koten*,†
Department of Metal-Mediated Synthesis, Debye Institute, and Bijvoet Center for Biomolecular
Research, Department of Crystal and Structural Chemistry, Utrecht University,
Padualaan 8, 3584 CH Utrecht, The Netherlands
Received January 4, 2005
Summary: A novel fluoroaryl-substituted PCP ligand
has been synthesized and used to generate the corre-
sponding Pd complexes. The bonding of the fluoroaryl
phosphine has been investigated by X-ray crystallogra-
phy, NMR spectroscopy, and a competition experiment,
which indicate that the ligand is sterically comparable
to its well-known phenyl analogue but clearly imparts
significant electronic differences to the metal center.
are known to potentially enhance catalytic activity or
alter selectivity over electron-rich analogues.5 Some
pincer ligands6 have been synthesized that included
perfluorinated alkyl chains for use in fluorous biphasic
catalysis.7 However, the electronic effect of the fluorous
“ponytail” is often mitigated by inclusion of an insulat-
ing spacer group, such as R2Si or R2C. Herein, we report
the synthesis of a PCP ligand with electron-withdrawing
pentafluorophenyl groups directly incorporated at phos-
phorus. Cationic and neutral Pd complexes were syn-
thesized, and the effect of the pentafluorophenyl phos-
phine group on the bonding and electronic character of
the metal center was investigated.
Attempts to generate ligand 1 via reaction of (C6F5)2-
PLi salts with benzylic halides were not successful, as
the naked (C6F5)2P- anion is unstable, even at low
temperatures.8 Formation of [{1,3-(C6F5)2P(H)CH2}2Ar]-
[Br]2 salts by reaction of (C6F5)2PH with R,R′-dibromo-
m-xylene, species which can be deprotonated to give
PCP pincers,9 was also unproductive, due to the low σ
basicity of the P centers. Alternately, the synthesis of
ligand 1 was realized via reaction of 1,3-(ClMgCH2)2C6H4
with 2 equiv of BrP(C6F5)2 in diethyl ether (Scheme 1).
The meta-substituted di-Grignard reagent was cleanly
generated using the method of Lappert10 with R,R′-
dichloro-m-xylene. Ligand 1 was purified by column
chromatography with no signs of oxidation and can be
Mono- and multidentate phosphine ligands are seem-
ingly ubiquitous in coordination and organometallic
chemistry and have been used to stabilize a wide variety
of metal complexes and catalysts.1 Prominent members
of the chelating phosphine family are the monoanionic,
potentially terdentate PCP pincer-type ligands2 with the
formula [2,6-(R2PCH2)2C6H3]-, where R ) alkyl, aryl.
One of the main advantages of ECE-type (E ) N, P, S,
O) pincers is the ease with which functionality may be
incorporated to tune electronic and steric properties at
the metal center.3 Indeed, many variations to the basic
PCP structure have been utilized to stabilize metal
complexes or generate highly active catalysts.2-4 Con-
spicuously absent from this list are PCP ligands incor-
porating electron-withdrawing functions directly bonded
to the P centers, even though electron-poor phosphines,
such as P(C6F5)3 and [(C6F5)2PCH2CH2P(C6F5)2] (dfppe),
* To whom correspondence should be addressed. Tel: +3130
† Debye Institute.
‡ Bijvoet Center for Biomolecular Research.
(5) Representative examples: (a) Alezra, V.; Bernardelli, G.; Corm-
inboeuf, C.; Frey, U.; Ku¨ndig, E. P.; Merbach, A. E.; Saundan, C. M.;
Viton, F.; Weber, J. J. Am. Chem. Soc. 2004, 126, 4843 and references
therein. (b) Wursche, R.; Debaerdemaeker, T.; Klinga, M.; Rieger, B.
Eur. J. Inorg. Chem. 2000, 2063. (c) Chen, A. S. C.; Pai, C.-C.; Yang,
T.-K.; Chan, S.-M. J. Chem. Soc., Chem. Commun. 1995, 2031. (d)
Ojima, I.; Kwon, H. B. J. Am. Chem. Soc. 1988, 110, 5617. (e) Mohr,
W.; Stark, G. A.; Jiao, H.; Gladysz, J. A. Eur. J. Inorg. Chem. 2001,
925. (f) Bellabarba, R. M.; Nieuwenhuyzen, M.; Saunders: G. C.
Organometallics 2002, 21, 5726.
§ Address correspondence pertaining to crystallographic studies to
(1) (a) Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M.
Advanced Inorganic Chemistry, 6th ed.; Wiley: New York, 1999. (b)
van Leeuwen, P. W. N. M. Homogeneous Catalysis, Understanding the
Art; Kluwer: Dordrecht, The Netherlands, 2004. For recent reviews
on phosphine transition-metal complexes see: (c) Reek, J. N. H.; de
Groot, D.; Oosterom, G. E.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.
C. R. Chim. 2003, 6, 1061. (d) Thomas, C. M.; Su¨ss-Fink, G. Coord.
Chem. Rev. 2003, 243(1-2), 125. (e) Crepy, K. V. L.; Imamoto, T. Top.
Curr. Chem. 2003, 229, 1. (f) Freixa, Z. van Leeuwen, P. W. N. M.
Dalton Trans. 2003, 10, 1890. (g) Crepy, K. V. L.; Imamoto, T. Adv.
Synth. Catal. 2003, 345, 79. (h) Ansell, J.; Wills, M. Chem. Soc. Rev.
2002, 31, 259.
(6) (a) Curran, D. P.; Fischer, K.; Moura-Letts, G. Synlett. 2004,
1379. (b) Dani, P.; Richter, B.; van Klink, G. P. M.; van Koten, G. Eur.
J. Inorg. Chem. 2001, 125.
(7) (a) Handbook of Fluorous Chemistry; Gladysz, J. A., Curran, D.
P., Horvath, I. T., Eds.; Wiley-VCH: Weinheim, Germany, 2004. For
recent reviews on fluorous chemistry see: (b) Dobbs, A. P.; Kimberley,
M. R. J. Fluorine Chem. 2002, 118, 3. (c) Zhang, W. Tetrahedron Lett.
2003, 59, 4475. (d) Zhang, W. Chem. Rev. 2004, 108, 2531.
(8) (a) Hoge, B.; Herrmann, T.; Tho¨sen, C.; Patenburg, I. Inorg.
Chem. 2003, 42, 5422. (b) Hoge, B.; Tho¨sen, C.; Herrmann, T.;
Patenburg, I. Inorg. Chem. 2003, 42, 3633. (c) Hoge, B.; Herrmann,
T.; Tho¨sen, C.; Patenburg, I. Inorg. Chem. 2003, 42, 3623. (d) Hoge,
B.; Tho¨sen, C.; Herrmann, T.; Patenburg, I. Inorg. Chem. 2002, 41,
2260.
(2) van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759.
(3) (a) Albrecht, M.; van Koten, G. Angew. Chem., Int. Ed. 2001,
41, 3750. (b) Singleton, J. T. Tetrahedron Lett. 2003, 59, 1837.
(4) Other recent investigations with PCP metal complexes: (a)
Kozhanov, K. A.; Bobnov, M. P.; Cherkasov, V. K.; Fukin, G. K.;
Abakumov, G. A. Dalton 2004, 2957. (b) Morales-Morales, D.; Redon,
R.; Yung, C.; Jensen, C. Inorg. Chim. Acta 2004, 357, 2953. (c) Zhang,
X. W.; Emge, T. J.; Goldman, A. S. Inorg. Chim. Acta 2004, 357, 3014.
(d) Solin, N.; Kjellgren, J.; Szabo, K. J. J. Am. Chem. Soc. 2004, 126,
7026. (e) Amoroso, D.; Jabri, Yap, G. P. A.; Gusev, D. G.; dos Santos,
E. N.; Fogg, D. E. Organometallics 2004, 23, 4047. (f) Gagliardo, M.;
Dijkstra, H. P.; Coppo, P.; De Cola, L.; Lutz, M.; Spek, A. L.; van Klink,
G. P. M.; van Koten, G. Organometallics 2004, 23, 5833. (g) Eberhard,
M. R. Org. Lett. 2004, 6, 2125. (h) Cohen, R.; Milstein, D.; Martin, J.
M. L. Organometallics 2004, 23, 2342.
(9) Gandelman, M.; Vigalok, A.; Shimon, L. J. W.; Milstein, D.
Organometallics 1997, 16, 3981.
(10) (a) Lappert, M. F.; Martin, T. R.; Atwood, J. L.; Hunter, W. E.
J. Chem. Soc., Chem. Commun. 1980, 476. (b) Lappert, M. F.; Martin,
T. R.; Raston, C. L.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton
Trans. 1982, 1959.
10.1021/om0500063 CCC: $30.25 © 2005 American Chemical Society
Publication on Web 03/23/2005