10.1002/adsc.202001376
Advanced Synthesis & Catalysis
M. Smith, D. M. Walden, J. E. Taylor, Z. Brice, E. R.
Chem. 2015, 13, 11087–11095; c) P. Yadav, R. Pratap,
V. J. Ram, Asian J. Org. Chem. 2020, 9, 1377–1409.
T. Robinson, C. Fallan, D. B. Cordes, A. M. Z. Slawin,
H. C. Richardson, M. A. Grove, P. H.-Y. Cheong, A. D.
Smith, Angew. Chem. Int. Ed. 2018, 57, 3200–3206; l)
S. Kolb, G. A. Oliver, D. B. Werz. Angew. Chem. Int.
[9] a) E. Winterfeldt H.-J. Dillinger, Chem. Ber. 1966, 99,
1558–1568; b) J. C. Tebby, I. F. Wilson, D. V. Griffiths,
J. Chem. Soc. Perkin Trans. 1, 1979, 2133–2135; c) S.
Hünig, R. Schaller, Angew. Chem. Int. Ed. Engl. 1982,
21, 36–49; d) V. Nair, J. S. Nair, A. U. Vinod, Synthesis
2000, 1713–1718; e) A. A. Esmaili, A. Bodaghi,
Tetrahedron 2003, 59, 1169–1171; f) J. L. Methot, W.
R. Roush, Adv. Synth. Catal. 2004, 346, 1035–1050; g)
V. Nair, R. S. Menon, A. R. Sreekanth, N. Abhilash, A.
T. Biju, Acc. Chem. Res. 2006, 39, 520–530; h) S.
Asghari, A. K. Habibi, Helv. Chim. Acta 2012, 95, 810–
817.
[2] J. S. Murray, P. Lane, P. Politzer, Int. J. Quantum Chem.
2008, 108, 2770−2781.
[3] For selected references, see: a) R. B. Silverman, J. Org.
Chem. 1981, 46, 4789−4791; b) Á. Kucsman, I.
Kapovits, L. Párkányi, G. Argay, A. Kálmán, J. Mol.
Struct. 1984, 125, 331−347; c) Á. Kucsman, I. Kapovits,
M. Czugler, L. Párkányi, A. Kálmán, J. Mol. Struct.
1989, 198, 339−353; d) S. Rodríguez, M. Kneeteman, J.
Izquierdo, I. López, F. V. González, G. Peris, [10] For a review on the importance of S-containing
Tetrahedron 2006, 62, 11112−11123; e) R. Dubey, N.
W. Polaske, G. S. Nichol, B. Olenyuk, Tetrahedron Lett.
2009, 50, 4310−4313; f) F. V. González, A. Jain, S.
Rodríguez, J. A. Sáez, C. Vicent, G. Peris, J. Org.
Chem. 2010, 75, 5888−5894; g) X. Wang, T. Yang, X.
Cheng, Q. Shen, Angew. Chem. Int. Ed. 2013, 52,
12860−12864; h) T. Bootwicha, X. Liu, R. Pluta, I.
Atodiresei, M. Rueping, Angew. Chem. Int. Ed. 2013,
52, 12856−12859.
scaffolds in medicinal chemistry and drugs, see: a) M.
Feng, B. Tang, S. H. Liang, X. Jiang, Curr. Top. Med.
Chem. 2016, 16, 1200–1216; For a general discussion
on the synthesis and applications of thioesters, see: b) V.
Hirschbeck, P. H. Gehrtz, I. Fleischer, Chem. Eur. J.
2018, 24, 7092–7107; c) Z. Qiao, X. Jiang, Org. Lett.
2016, 18, 1550–1553.
[11] a) J. Knappe, U. Herzog-Wiegand, Liebigs Ann. Chem.
1967, 701, 217–224; b) S. Min, S. V. More, J.-Y. Park,
S.-B. Jeon, S. Y. Park, E.-J. Park, S.-H. Yoon, D.-K.
Choi, Molecules 2014, 19, 19361–19375; c) K. Mal, A.
Sharma, P. R. Maulik, I. Das, Chem. Eur.
J. 2014, 20, 662–667; d) K. Mal, S. Das, N. C. Maiti, R.
Natarajan, I. Das, J. Org. Chem. 2015, 80, 2972–2988;
e) K. Mal, A. Kaur, F. Haque, I. Das, J. Org. Chem.
2015, 80, 6400–6410; f) B. Hu, P. Zhou, Q. Zhang, Y.
Wang, S. Zhao, L. Lu, S. Yan, F. Yu, J. Org. Chem.
2018, 83, 14978–14986; g) J. Hua, J. Xu, J. Xu, B.
Zhou, D. Zhang, Z. Yang, Z. Fang, K. Guo. Eur. J. Org.
Chem. 2019, 4056–4060.
[4] For selected references, see: a) H.-B. Bürgi, Angew.
Chem. 1975, 87, 461–475; b) J. G. Angyan, R. A.
Poirier, A. Kucsman, I. G. Csizmadia, J. Am. Chem.
Soc. 1987, 109, 2237–2245; c) F. T. Burling, B. M.
Goldstein, J. Am. Chem. Soc. 1992, 114, 2313−2320; d)
G. D. Markham, C. W. Bock, J. Mol. Struct.:
THEOCHEM 1997, 418, 139−154; e) X. Zhang, Z.
Gong, J. Li, T. Lu, J. Chem. Inf. Model. 2015, 55,
2138–2153.
[5] K. Nozaki, N. Sato, K. Ikeda, H. Takaya, J. Org. Chem.
1996, 61, 4516–4519.
[12] CCDC 2041719 (4g), 2041720 (4q), 2041721 (4r),
[6] a) K. Mal, S. Naskar, S. K. Sen, R. Natarajan, I. Das,
Adv. Synth. Catal. 2016, 358, 3212–3230; b) S.
Naskar. I. Das, Adv. Synth. Catal. 2017, 359, 875–885;
c) K. Mal. I. Das, Adv. Synth. Catal. 2017, 359, 2692–
2698; d) R. Maity, S. Naskar. K. Mal, S. Biswas, I. Das,
Adv. Synth. Catal. 2017, 359, 4405–4410; e) R. Maity,
S. Naskar, I. Das, J. Org. Chem. 2018, 83, 2114–2124;
f) R. Maity, B. Das, I. Das, Adv. Synth. Catal. 2019,
2041722
(5f)
contain
the
supplementary crystallographic data for this paper.
These data can be obtained free of charge via
data_request@ccdc.cam.ac.uk, or by contacting The
Cambridge Crystallographic Data Centre, 12 Union
Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
361, 2347–2353; g) S. Naskar, S. R. Chowdhury, S. [13] See the Supporting Information for the single-crystal
Mondal, D. K. Maiti, S. Mishra, I. Das, Org. Lett. 2019,
21, 1578–1582; h) A. Bankura, S. Naskar, S. R.
Chowdhury, R. Maity, S. Mishra, I. Das, Adv. Synth.
Catal. 2020, 362, 3604–3612; i) J. Saha, I. Das, Adv.
Synth. Catal. 2020, 362, 609–617.
X-ray structures of Ph-CH=CH(E)-C(=O)-C(=O)-SMe
and 4-CN-C6H4-CH=CH(E)-C(=O)-C(=O)-SMe,
illustrating the close contact between the ketone O and
S atoms.
[14] CCDC accession numbers for α-ketothioesters Ph-
CH=CH(E)-C(=O)-C(=O)-SMe (4k) and MeSO2-C6H4-
C(=O)-C(=O)-SCH2Ph are 960814 and 1895971,
respectively, data taken from the Cambridge
Crystallographic Database (CSD).
[7] For other references related to the S atom effects, see:
a) S. S. Hixson, S. H. Hixson, J. Org. Chem. 1972, 37,
1279–1280; b) V. Georgian, S. K. Boyer, B. Edwards, J.
Org. Chem. 1980, 45, 1686–1688; c) M. Abe, K.
Fujimoto, M. Nojima, J. Am. Chem. Soc. 2000, 122,
4005–4010; d) T. B. Nguyen, Adv. Synth. Catal. 2017,
359, 1066–1130.
[15] M. Wang, Z. Dai, X. Jiang, Nat. Commun. 2019, 10,
2661–2669.
[16] S. Boryczka, T. Glowiak, G. L. Guillanton, Q. T. Do,
[8] For selected references, see: a) Y. S. Rao, Chem. Rev.
1976, 76, 625–694; b) S. Phae-nok, C. Kuhakarn, M.
Pohmakotr, V. Reutrakula, D. Soorukram, Org. Biomol.
D. Elothmani, J. Chem. Crystallogr. 1996, 26, 231–234.
7
This article is protected by copyright. All rights reserved.