Journal of the American Chemical Society
Article
10817. (c) Wu, L.; Fleischer, I.; Jackstell, R.; Profir, I.; Franke, R.;
Beller, M. J. Am. Chem. Soc. 2013, 135, 14306. (d) Haynes, A.; Maitlis,
P. M.; Morris, G. E.; Sunley, G. J.; Adams, H.; Badger, P. W.; Bowers,
C. M.; Cook, D. B.; Elliott, P. I.; Ghaffar, T.; Green, H.; Griffin, T. R.;
Payne, M.; Pearson, J. M.; Taylor, M. J.; Vickers, P. W.; Watt, R. J. J.
Am. Chem. Soc. 2004, 126, 2847.
(2) For some recent reviews on transition-metal-catalyzed carbon-
ylations, see: (a) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Rev. 2013,
113, 1. (b) Wu, X.-F.; Neumann, H.; Beller, M. ChemCatChem 2012,
4, 447. (c) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2011,
40, 4986. (d) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177.
(e) Grigg, R.; Mutton, S. P. Tetrahedron 2010, 66, 5515.
(f) Brennfuhrer, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed.
2009, 48, 4114.
(3) (a) Wu, L.; Liu, Q.; Fleischer, I.; Jackstell, R.; Beller, M. Nat.
Commun. 2014, 5, doi: 10.1038/ncomms4091. (b) Yu, B.; Zhao, Y.;
Zhang, H.; Xu, J.; Hao, L.; Gao, X.; Liu, Z. Chem. Commun. 2014, 50,
2330. (c) Dobrovetsky, R.; Stephan, D. W. Angew. Chem., Int. Ed.
2013, 52, 2516.
(4) For selected reviews on the valorization of CO2, see: (a) Jessop,
P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1995, 95, 259. (b) Jessop, P.
G.; Joo, F.; Tai, C.-C. Coord. Chem. Rev. 2004, 248, 2425. (c) Aresta,
́
M.; Dibenedetto, A. Dalton Trans. 2007, 2975. (d) Sakakura, T.; Choi,
J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. (e) Correa, A.; Martin,
R. Angew. Chem., Int. Ed. 2009, 48, 6201. (f) Benson, E. E.; Kubiak, C.
P.; Sathrum, A. J.; Smieja, J. M. Chem. Soc. Rev. 2009, 38, 89.
(g) Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; Dubois,
D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.;
Kerfeld, C. A.; Morris, R. H.; Peden, C. H. F.; Portis, A. R.; Ragsdale,
S. W.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.; Thauer, R. K.;
Waldrop, G. L. Chem. Rev. 2013, 113, 6621. (h) Wang, W.; Wang, S.;
Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. (i) Huang, K.; Sun,
C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435. (j) Martin, R.; Kleij, A.
W. ChemSusChem 2011, 4, 1259. (k) Cokoja, M.; Bruckmeier, C.;
W.; Lee, S. H.; Shin, J. W.; Lee, S. P.; Kim, Y. J. Am. Chem. Soc. 2003,
125, 14688. (e) DiMeglio, J. L.; Rosenthal, J. J. Am. Chem. Soc. 2012,
135, 8798. (f) Keith, J. A.; Grice, K. A.; Kubiak, C. P.; Carter, E. A. J.
Am. Chem. Soc. 2013, 135, 15823. (g) Lu, Q.; Rosen, J.; Zhou, Y.;
Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. Nat. Commun.
2014, 5, 3242.
(8) (a) Hermange, P.; Lindhardt, A. T.; Taaning, R. H.; Bjerglund,
K.; Lupp, D.; Skrydstrup, T. J. Am. Chem. Soc. 2011, 133, 6061.
(b) Friis, S. D.; Taaning, R. H.; Lindhardt, A. T.; Skrydstrup, T. J. Am.
Chem. Soc. 2011, 133, 18114. (c) Nielsen, D. U.; Lescot, C.; Lindhardt,
A. T.; Gøgsig, T. M.; Skrydstrup, T. Chem.Eur. J. 2013, 19, 17926.
(d) Korsager, S.; Taaning, R. H.; Lindhardt, A. T.; Skrydstrup, T. J.
Org. Chem. 2013, 78, 6120 and references cited therein.
(9) Laitar, D. S.; Muller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127,
̈
17196.
(10) Kleeberg, C.; Cheung, M. S.; Lin, Z.; Marder, T. B. J. Am. Chem.
Soc. 2011, 133, 19060.
(11) Motokura, K.; Kashiwame, D.; Takahashi, N.; Miyaji, A.; Baba,
T. Chem.Eur. J. 2013, 19, 10030.
(12) This amide coupling is one of the most efficient and has been
repeatedly used by us for investigations of CO release in a two-
chamber reactor (see refs 8a and 8b).
(13) For the metal-free reduction of CO2 to CO using a disilyne
biphosphine adduct, see: Gau, D.; Rodriguez, R.; Kato, T.; Saffon-
Merceron, N.; de Cozar, A.; Cossío, F. P.; Baceiredo, A. Angew. Chem.,
́
Int. Ed. 2011, 50, 1092.
(14) The rate of CO release is undoubtedly faster with 10 mol%,
which proved necessary for the good conversions with the more
complex substrates in the second chamber as illustrated in Scheme 6.
(15) (a) Zhang, L.; Cheng, J.; Hou, Z. Chem. Commun. 2013, 49,
4782. (b) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem., Int. Ed.
2009, 48, 3322.
(16) (a) Hiyama, T.; Obayashi, M.; Mori, I.; Nozaki, H. J. Org. Chem.
1983, 48, 912. (b) Hiyama, T.; Obayashi, M. Tetrahedron Lett. 1983,
24, 4109. (c) Hiyama, T.; Obayashi, M.; Sawahata, M. Tetrahedron
Rieger, B.; Herrmann, W. A.; Kuhn, F. E. Angew. Chem., Int. Ed. 2011,
̈
Lett. 1983, 24, 4113. See also (d) Wagler, J.; Bohme, U.; Roewer, G.
̈
50, 8510. (l) Tsuji, Y.; Fujihara, T. Chem. Commun. 2012, 48, 9956.
(m) Omae, I. Coord. Chem. Rev. 2012, 256, 1384. (n) Schneider, J.; Jia,
H.; Muckerman, J. T.; Fujita, E. Chem. Soc. Rev. 2012, 41, 2036.
(o) Lu, X.-B.; Darensbourg, D. J. Chem. Soc. Rev. 2012, 41, 1462.
(p) Zhang, L.; Hou, Z. Chem. Sci. 2013, 4, 3395. (q) Aresta, M.;
Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709. (r) Tlili, A.;
Frogneux, X.; Blondiaux, E.; Cantat, T. Angew. Chem., Int. Ed. 2014,
53, 2543. (s) Lanzafame, P.; Centi, G.; Perathoner, S. Chem. Soc. Rev.
2014, DOI: 10.1039/C3CS60396B. (t) Fontaine, F.-G.;
Organometallics 2004, 23, 6066. (e) Mita, T.; Chen, J.; Sugawara, M.;
Sato, Y. Org. Lett. 2012, 14, 6202.
(17) Friis, S. D.; Andersen, T. L.; Skrydstrup, T. Org. Lett. 2013, 15,
1381.
(18) See Supporting Information for the design and dimensions of
the three-chamber system.
(19) An intriguing follow-up to this work would be to identify
reaction conditions for the conversion of the disiloxane back to the
disilane, possibly via an electrochemical setup.
Courtemanche, M.-A.; Leg
(5) For some recent publications on the CO2 valorization, see:
(a) Correa, A.; Leon, T.; Martin, R. J. Am. Chem. Soc. 2014, 136, 1062.
́
are,
́
M.-A. Chem.Eur. J. 2014, 20, 2990.
́
(b) Wu, J.; Kozak, J. A.; Simoen, F.; Hatton, T. A.; Jamison, T. F.
Chem. Sci. 2014, 5, 1227. (c) Studt, F.; Sharafutdinov, I.; Abild-
Pedersen, F.; Elkjær, C. F.; Hummelshøj, J. S.; Dahl, S.; Chorkendorff,
́
I.; Nørskov, J. K. Nat. Chem. 2014, 6, 320. (d) Leon, T.; Correa, A.;
Martin, R. J. Am. Chem. Soc. 2013, 135, 1221. (e) Sasano, K.; Takaya,
J.; Iwasawa, N. J. Am. Chem. Soc. 2013, 135, 10954. (f) Ostapowicz, T.
G.; Schmitz, M.; Krystof, M.; Klankermayer, J.; Leitner, W. Angew.
Chem., Int. Ed. 2013, 52, 12119. (g) Bontemps, S.; Sabo-Etienne, S.
Angew. Chem., Int. Ed. 2013, 52, 10253. (h) Kozak, J. A.; Wu, J.; Su, X.;
Simoen, F.; Hatton, T. A.; Jamison, T. F. J. Am. Chem. Soc. 2013, 135,
18497. (i) Zhang, L.; Cheng, J.; Carry, B.; Hou, Z. J. Am. Chem. Soc.
2012, 134, 14314. (j) Wesselbaum, S.; Vom Stein, T.; Klankermayer,
J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499. (k) Angamuthu,
R.; Byers, P.; Lutz, M.; Spek, A. L.; Bouwman, E. Science 2010, 327,
313.
(6) (a) Sanderson, R. T. Chemical bonds and bond energy, 2nd ed.;
Academic Press: New York, NY, 1976. (b) Sanderson, R. T. Polar
Covalence; Academic Press: New York, NY, 1983.
(7) For a current status and a few recent and notable exemptions,
́
see: (a) Costentin, C.; Robert, M.; Saveant, J.-M. Chem. Soc. Rev. 2013,
42, 2423. (b) Oh, Y.; Hu, X. Chem. Soc. Rev. 2013, 42, 2253. (c) Qiao,
J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 43, 631. (d) Shin,
6147
dx.doi.org/10.1021/ja502911e | J. Am. Chem. Soc. 2014, 136, 6142−6147