ChemComm
Communication
Int. Ed. Engl., 1997, 36, 2635; (b) B. M. Trost and L. S. Kallander,
J. Org. Chem., 1999, 64, 5427.
5 For copper-catalyzed asymmetric allylation of b-ketoesters, in which
olefin moieties of the starting 1,2-disubstituted allylic electrophiles
remain intact, see: Q.-H. Deng, H. Wadepohl and L. H. Gade, J. Am.
Chem. Soc., 2012, 134, 2946.
6 (a) J. W. Faller, M. E. Thomsen and M. J. Mattina, J. Am. Chem. Soc.,
1971, 93, 2642; (b) J. W. Faller and M. T. Tully, J. Am. Chem. Soc.,
1972, 94, 2676.
7 (a) J. Tsuji, I. Shimizu, I. Minami, Y. Ohashi, T. Sugiura and
K. Takahashi, J. Org. Chem., 1985, 50, 1523; (b) D. Ferroud,
J. M. Gaudin and J. P. Genet, Tetrahedron Lett., 1986, 27, 845;
Scheme 2 Asymmetric allylation of 1a with an E/Z mixture of allylic
carbonate 2a.
´
(c) P. Gamez, C. Ariente, J. Gore and B. Cazes, Tetrahedron, 1998,
1-position (entries 8–10). Unfortunately, this system was sensitive
to the alteration of the substituent at the 2-position of allylic
carbonates, as the reaction of 1a with 2-ethyl-substituted 2e
furnished 3l with insufficient stereoselectivity (entry 11). The absolute
configuration and olefin geometry of allylated product 3g were
unequivocally determined by X-ray crystallographic analysis.
In addition, the predominant formation of E-configured 3j and
3k was confirmed by X-ray analysis, and the stereochemistries
of the remaining examples were assumed by analogy.
To gain insight into the reaction pathway, we examined the
reaction of 1a with an E/Z-isomeric mixture of 2a under the
optimal conditions, wherein 3a was obtained in 91% yield with
similarly excellent E- and enantioselectivity (Scheme 2). This result
clearly indicates that the rapid syn–anti isomerization of the inter-
mediary p-allyl palladium complex occurred prior to the carbon–
carbon bond-forming event, and that ligand 4e would play a pivotal
role in controlling the distribution of these syn and anti complexes
or the relative rate of the bond formation from each complex.
We have developed a palladium-catalyzed highly E- and
enantioselective allylation of 3-substituted benzofuranones with
1,2-disubstituted allylic carbonates. The judicious utilization of the
structural modularity of the ion-paired chiral ligands allowed for
rigorous and simultaneous control of E/Z selectivity and enantio-
54, 14835; (d) C. Commandeur, S. Thorimbert and M. Malacria,
J. Org. Chem., 2003, 68, 5588; (e) H. Tsukamoto, T. Uchiyama,
T. Suzuki and Y. Kondo, Org. Biomol. Chem., 2008, 6, 3005.
8 K. Ohmatsu, M. Ito, T. Kunieda and T. Ooi, J. Am. Chem. Soc., 2013,
135, 590.
9 Catalytic asymmetric synthesis of benzofuran-2(3H)-ones possessing
a quaternary stereocenters at C-3 positions: (a) I. D. Hills and G. C. Fu,
Angew. Chem., Int. Ed., 2003, 42, 3921; (b) S. A. Shaw, P. Aleman,
J. Christy, J. W. Kampf, P. Va and E. Vedejs, J. Am. Chem. Soc., 2006,
128, 925; (c) X. Li, Z. Xi, S. Luo and J.-P. Cheng, Adv. Synth. Catal.,
2010, 352, 1097; (d) F. Pesciaioli, X. Tian, G. Bencivenni, G. Bartoli
and P. Melchiorre, Synlett, 2010, 1704; (e) X. Li, S. Hu, Z. Xi, L. Zhang,
S. Luo and J.-P. Cheng, J. Org. Chem., 2010, 75, 8697; ( f ) C. Cassani,
´
X. Tian, E. C. Escudero-Adan and P. Melchiorre, Chem. Commun.,
2011, 47, 233; (g) C.-L. Zhu, F.-G. Zhang, W. Meng, J. Nie, D. Cahard
and J.-A. Ma, Angew. Chem., Int. Ed., 2011, 50, 5869; (h) X. Li, X.-S. Xue,
C. Liu, B. Wang, B.-X. Tan, J.-L. Jin, Y.-Y. Zhang, N. Dong and
J.-P. Cheng, Org. Biomol. Chem., 2012, 10, 413; (i) D. Wang,
Y.-L. Yang, J.-J. Jiang and M. Shi, Org. Biomol. Chem., 2012, 10, 7158.
10 (a) K. Ohmatsu, M. Ito, T. Kunieda and T. Ooi, Nat. Chem., 2012, 4, 473;
(b) K. Ohmatsu, N. Imagawa and T. Ooi, Nat. Chem., 2014, 6, 47.
11 For the first use of chiral phosphate ions in asymmetric Pd-catalyzed
allylic alkylations, see: (a) S. Mukherjee and B. List, J. Am. Chem.
Soc., 2007, 129, 11336; (b) G. Jiang and B. List, Angew. Chem., Int. Ed.,
2011, 50, 9471.
12 Recent reviews on asymmetric catalysis with chiral anions, see:
(a) R. J. Phipps, G. L. Hamilton and F. D. Toste, Nat. Chem., 2012,
4, 603; (b) M. Mahlau and B. List, Angew. Chem., Int. Ed., 2013,
52, 518. For a review on asymmetric ion-pairing catalysis, see:
(c) K. Brak and E. N. Jacobsen, Angew. Chem., Int. Ed., 2013, 52, 534.
selectivity. We believe that the present study expands the versatility 13 For other representative reports on asymmetric transition-metal
catalysis using chiral phosphate, see: (a) V. Komanduri and
M. J. Krische, J. Am. Chem. Soc., 2006, 128, 16448; (b) G. L. Hamilton,
E. J. Kang, M. Mba and F. D. Toste, Science, 2007, 317, 496;
of transition-metal-catalyzed allylic alkylations for the construction
of synthetically valuable chiral building blocks.
This work was financially supported by CREST from JST, NEXT
Program, Program for Leading Graduate Schools ‘‘Integrative Graduate
Education and Research Program in Green Natural Sciences’’ in Nagoya
University, and the Uehara Memorial Foundation.
(c) M. Rueping, A. P. Antonchick and C. Brinkmann, Angew. Chem.,
Int. Ed., 2007, 46, 6903; (d) C. Li, C. Wang, B. Villa-Marcos and J. Xiao,
J. Am. Chem. Soc., 2008, 130, 14450; (e) C. Li, B. Villa-Marcos and J. Xiao,
J. Am. Chem. Soc., 2009, 131, 6967; ( f ) B. Zhao, H. Du and Y. Shi, J. Org.
Chem., 2009, 74, 8392; (g) M. J. Campbell and F. D. Toste, Chem. Sci.,
2011, 2, 1369; (h) S. Liao and B. List, Angew. Chem., Int. Ed., 2010,
49, 628; (i) G. Jiang, R. Halder, Y. Fang and B. List, Angew. Chem., Int.
Ed., 2011, 50, 9752; ( j) V. Rauniyar, Z. J. Wang, H. E. Burks and
F. D. Toste, J. Am. Chem. Soc., 2011, 133, 8486; (k) G. Jiang and B. List,
Chem. Commun., 2011, 47, 10022; (l) M. Rueping and R. M. Koenigs,
Notes and references
1 (a) B. M. Trost and M. L. Crawley, Chem. Rev., 2003, 103, 2921;
(b) Z. Lu and S. Ma, Angew. Chem., Int. Ed., 2008, 47, 258.
´
Chem. Commun., 2011, 47, 304; (m) M. Barbazanges, M. Auge, J. Moussa,
H. Amouri, C. Aubert, C. Desmarets, L. Fensterbank, V. Gandon,
M. Malacria and C. Ollivier, Chem.–Eur. J., 2011, 17, 13789;
(n) J. R. Zbieg, E. Yamaguchi, E. L. Mclnturff and M. J. Krische, Science,
2012, 336, 324; (o) Z. Chai and T. J. Rainey, J. Am. Chem. Soc., 2012,
134, 3615; (p) E. L. McInturff, E. Yamaguchi and M. J. Krische, J. Am.
Chem. Soc., 2012, 134, 20628; (q) A. K. Mourad, J. Leutzow and
2 Ir-catalyzed enatio- and diastereoselective allylations: (a) T. Kanayama,
K. Yoshida, H. Miyabe and Y. Takemoto, Angew. Chem., Int. Ed., 2003,
42, 2054; (b) W. Chen and J. F. Hartwig, J. Am. Chem. Soc., 2013,
135, 2068; (c) S. Krautwald, D. Sarlah, M. A. Schafroth and
E. M. Carreira, Science, 2013, 340, 1065; (d) W.-B. Liu, C. M. Reeves,
S. C. Virgil and B. M. Stoltz, J. Am. Chem. Soc., 2013, 135, 10626.
3 Mo-catalyzed enatio- and diastereoselective allylations: (a) B. M. Trost
and K. Dogra, J. Am. Chem. Soc., 2002, 124, 7256; (b) B. M. Trost,
K. Dogra and M. Franzini, J. Am. Chem. Soc., 2004, 126, 1944;
(c) B. M. Trost and Y. Zhang, J. Am. Chem. Soc., 2007, 129, 14548;
(d) B. M. Trost and Y. Zhang, Chem.–Eur. J., 2010, 16, 296;
(e) B. M. Trost, J. R. Miller and C. M. Hoffman, Jr., J. Am. Chem. Soc.,
2011, 133, 8165.
´
C. Czekelius, Angew. Chem., Int. Ed., 2012, 51, 11149; (r) M. Auge,
M. Barbazanges, A. T. Tran, A. Simonneau, P. Elley, H. Amouri,
C. Aubert, L. Fensterbank, V. Gandon, M. Malacria, J. Moussa and
C. Ollivier, Chem. Commun., 2013, 49, 7833; (s) T. Miura,
Y. Nishida, M. Morimoto and M. Murakami, J. Am. Chem. Soc., 2013,
135, 11497.
14 For recent reviews on supramolecular catalysts, see: (a) M. T. Reetz,
Angew. Chem., Int. Ed., 2008, 47, 2556; (b) J. Meeuwissen and
J. N. H. Reek, Nat. Chem., 2010, 2, 615; (c) M. J. Wiester,
P. A. Ulmann and C. A. Mirkin, Angew. Chem., Int. Ed., 2011, 50, 114.
4 Selected examples of Pd-catalyzed enatio- and diastereoselective
allylation of prochiral carbon nucleophiles with 1,3-disubstituted
allylic electrophiles, see: (a) B. M. Trost and X. Ariza, Angew. Chem.,
4556 | Chem. Commun., 2014, 50, 4554--4557
This journal is ©The Royal Society of Chemistry 2014