Reactivity of Electrogenerated Br with Cyclohexene
J. Phys. Chem. B, Vol. 108, No. 41, 2004 16327
initial bromination step and further supports the proposed
mechanism. This is the first report of a bromination reaction in
a room temperature ionic liquid and commends its potential
application in larger scale organic electrosynthesis, with the
possibility of electrogeneration of bromine from bromide.
Acknowledgment. M.C.B. thanks the Analytical Division
of the Royal Society of Chemistry for a studentship and
Alphasense for CASE funding. C.V. acknowledges support from
QUILL and The School of Chemistry, QUB.
References and Notes
(1) Iwasita, T.; Giordano, M. C. Electrochim. Acta 1969, 14, 1045.
(2) Magno, F.; Mazzocchin, G.-A.; Bontempelli, G. J. Electroanal.
Chem. 1973, 461, 461.
(3) Kolthoff, I. M.; Coetzee, J. F. J. Org. Chem. 1957, 79, 1852.
(4) Popov, A. I.; Geske, D. H. J. Org. Chem. 1958, 80, 5346.
(5) Cairns, T. L.; Graham, P. J.; Barrick, P. L.; Schrieber, R. S. J.
Org. Chem. 1952, 17, 751.
Figure 6. Comparison of experimental (O) and simulated (s)
voltammograms for the bromination of cyclohexene in MeCN at various
cyclohexene concentrations: (a) 0 mM; (b) 8 mM; (c) 18 mM.
(6) Pouillen, R.; Minko, R.; Verniette, M.; Martinet, P. Electrochim.
Acta 1979, 24, 1189.
(7) Visy, C.; Novak, M. Electrochim. Acta 1987, 32, 1757.
(8) Casalbore, G.; Mastragostino, M.; Valcher, S. J. Electroanal. Chem.
1978, 87, 411.
(9) Bellucci, G.; Bianchini, R.; Ambrosetti, R.; Ingrosso, G. J. Org.
Chem. 1985, 50, 3313.
(10) Bellucci, G.; Bianchini, R.; Vecchiani, S. J. Org. Chem. 1986, 51,
4224.
(11) Bellucci, G.; Bianchini, R.; Chiappe, C. J. Org. Chem. 1991, 56,
3067.
(12) Nagorski, R. W.; Brown, R. S. J. Am. Chem. Soc. 1992, 114, 7773.
(13) Slebocka-Tilk, H.; Zheng, C. Y.; Brown, R. S. J. Am. Chem. Soc.
1993, 115, 1347.
(14) Buckles, R. E.; Bader, J. M.; Thurmaier, R. J. J. Org. Chem. 1962,
27, 4523.
(15) Dzyuba, S. V.; Bartsch, R. A. ChemPhysChem 2002, 3, 161.
(16) Bonhoˆte, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.;
Graetzel, M. Inorg. Chem. 1996, 35, 1168.
(17) McFarlane, D. R.; Sun, J.; Golding, J.; Meakin, P.; Forsyth, M.
Electrochim. Acta 2000, 45, 1271.
(18) Seddon, K. R. Kinet. Catal. 1996, 37, 693.
(19) Holbrey, J. D.; Seddon, K. R. Clean Technologies EnViron. Policy
1999, 1, 223.
(20) Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; Wiley-
VCH: Weinheim, 2003.
Figure 7. Comparison plot of experimental (x) and simulated (s)
limiting currents against cyclohexene concentration in MeCN. Also
shown is the deviation in the fit when kf,1 is changed by an order of
magnitude: kf,1 ) (a) 4 × 104, (b) 4 × 105, and (c) 4 × 106 M-1 s-1
.
6, and Figure 7 shows the variation of the limiting current with
cyclohexene additions over the entire concentration range. Also
shown in Figure 7 is the deviation observed when kf,1 is varied
by an order of magnitude in either direction, demonstrating the
sensitivity of the model toward this parameter. The close
agreement between experimental and simulated data is fully
consistent with the proposed mechanism for the bromination
reaction in acetonitrile.
(21) Welton, T. Chem. ReV. 1999, 99, 2071.
(22) Buzzeo, M. C.; Klymenko, O. V.; Wadhawan, J. D.; Hardacre, C.;
Seddon, K. R.; Compton, R. G. J. Phys. Chem. A 2003, 107, 8872.
(23) Buzzeo, M. C.; Evans, R. G.; Compton, R. G. ChemPhysChem
2004, 5, 1106.
(24) Yang, H.; Gu, Y.; Deng, Y.; Shi, F. Chem. Commun. 2002, 274.
(25) Gaillon, L.; Bedioui, F. Chem. Commun. 2001, 1458.
(26) Barhdadi, R.; Courtinard, C.; Nedelec, J. Y.; Troupel, M. Chem.
Commun. 2003, 1434.
4. Conclusions
(27) Noda, A.; Watanabe, M. Electrochim. Acta 2000, 45, 1265.
(28) Naudin, E.; Ho, H. A.; Branchaud, S.; Breau, L.; Belanger, D. J.
Phys. Chem. B 2002, 106, 10585.
(29) Sekiguchi, K.; Atobe, M.; Fuchigami, T. Electrochem. Commun.
2002, 4, 881.
(30) Sharp, P. Electrochim. Acta 1983, 28, 301.
(31) Evans, R. G.; Klymenko, O. V.; Hardacre, C.; Seddon, K. R.;
Compton, R. G. J. Electroanal. Chem. 2003, 556, 179.
(32) Allen, G. D.; Buzzeo, M. C.; Villagra´n, C.; Hardacre, C.; Compton,
R. G. J. Electroanal. Chem., in press.
(33) Villagra´n, C.; Banks, C. E.; Hardacre, C.; Compton, R. G. Anal.
Chem. 2004, 76, 1998.
(34) Lide, D. R. Handbook of Chemistry and Physics, 81st ed.; CRC
Press: Boca Raton, FL, 2000.
(35) Kadish, K. M.; Ding, J. Q.; Malinski, T. Anal. Chem. 1984, 56,
1741.
(36) Klymenko, O. V.; Compton, R. G. J. Electroanal. Chem. 2004,
571, 207.
(37) Oldham, K. B.; Zoski, C. G. J. Electroanal. Chem. 1988, 256, 11.
(38) Alden, J. A.; Compton, R. G. J. Phys. Chem. B 1997, 101, 9606.
(39) Wilke, C. R.; Chang, P. Am. Inst. Chem. Eng. J. 1955, 1, 264.
The reactivity of electrogenerated bromine with cyclohexene
has been investigated in both the room-temperature ionic liquid,
1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]-
imide ([C4mim][N(Tf)2]) and the traditional aprotic solvent,
acetonitrile (MeCN). We have shown that, although the direct
oxidation of bromide in both [C4mim][N(Tf)2] and MeCN results
in similar voltammetry, the reaction of electrogenerated bromine
with cyclohexene occurs via separate mechanisms and yields
different products in the two solvents as a result of their different
nucleophilicities. Bulk electrolysis, followed by NMR spec-
troscopy, confirmed that bromination in the ionic liquid results
in the formation of trans-1,2-dibromocyclohexane, whereas the
solvent-incorporated trans-1-(N-acetylamino)-2-bromocyclo-
hexane is instead synthesized in acetonitrile. The reaction in
acetonitrile has been modeled by a computer simulation program
to yield a rate constant of kf,1 ) (4 ( 1) × 105 M-1 s-1 for the