C O M M U N I C A T I O N S
although here again the imide unit approaches the substrate rather
more closely than does the biphenylene fragment (centroid-centroid
separations are 3.66 and 3.91 Å, respectively). It is significant that,
in the corresponding perylene complex 6, much closer contact (3.57
Å) between the biphenylene-disulfone unit and the substrate results
in a considerable flattening of the torsion angle about the biaryl
linkage (19° in 6, 30° in 7, and 42° in 8).
Receptors 4 and 5 and their complexes represent only prototype
structures for an entire new family of self-assembling molecular
architectures with very high thermochemical stability. In view of
their ready accessibility (see Supporting Information), robust
chemical nature, and evident versatility in complexation, receptors
of this type clearly have the potential to become “workhorse”
molecules in the future development of supramolecular chemistry.
Acknowledgment. This work was supported by a grant from
the University of Reading and by an Overseas Research Studentship
(to Z.Z.) from Universities UK.
Figure 2. X-ray structure of the 1:2 complex (7) formed between bis(8-
quinolinolato)palladium(II) and macrocycle 5.
Supporting Information Available: Synthetic procedures, spec-
troscopic analyses, and thermo-oxidative stabilities for macrocycles 4
and 5; proton NMR data for complexation of 4 with pyrene and of 5
with pyren-1-ol; synthesis of the metallo-[3]pseudorotaxane 7 (PDF);
full crystallographic data for 4, 5, 6, 7, and 8 (CIF). This material is
References
(1) (a) Lehn, J.-M. Supramolecular Chemistry: Concepts and PerspectiVes,
VCH: Weinheim, 1995.
(2) Leading references: (a) Hunter, C. A.; Lawson K. R.; Perkins, J.; Urch,
C. J. J. Chem. Soc., Perkin Trans. 2 2001, 651. (b) Reek, J. N. H.; Priem,
A. H.; Engelkamp, H.; Rowan, A. E.; Elemans, J. A. A. W.; Nolte R. J.
M. J. Am. Chem. Soc. 1997, 119, 9956. (c) Kamieth, M.; Burket, U.;
Corbin, P. S.; Zimmerman, S. C.; Klarner, F. G. Eur. J. Org. Chem. 1999,
2741. (d) Cloninger, M. J.; Whitlock, H. W. J. Org. Chem. 1998, 63,
6153.
(3) (a) Claessens, C. G.; Stoddart, J. F. J. Phys. Org. Chem. 1997, 10, 254.
(b) Try, A. C.; Harding, M. M.; Hamilton D. G.; Sanders, J. K. M. Chem.
Commun. 1998, 723.
(4) (a) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem.,
Int. Ed. 2000, 39, 3349. (b) Ashton, P. R.; Baldoni, V.; Balzani, V.; Credi,
A.; Hoffman, H. D. A.; Mart´ınez-D´ıaz, M.-V.; Raymo, F. M.; Stoddart,
J. F.; Venturi, M. Chem. Eur. J. 2001, 7, 3482.
(5) (a) Pease, A. R.; Jeppeson, J. O.; Stoddart, J. F.; Luo Y, Collier C. P.;
Heath, J. R. Acc. Chem. Res. 2001, 34, 433. (b) Collier, C. P.; Wong, E.
W.; Belohradsky, M.; Raymo, F. M.; Stoddart, J. F.; Kuekes, P. J.;
Williams, R. S.; Heath, J. R. Science 1999, 285, 391. (c) Collier, C. P.;
Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverley, K.; Sampaio, J.; Raymo,
F. M.; Stoddart, J. F.; Heath, J. R. Science 2000, 289, 1172.
(6) (a) Amabalino, D. B.; Stoddart, J. F. Chem. ReV. 1995, 95, 2725. (b)
Amabilino, D. B.; Ashton, P. R.; Balzani, V.; Boyd, S. E.; Credi, A.;
Lee, J. Y.; Menzer, S.; Stoddart, J. F.; Venturi, M.; Williams, D. J. J.
Am. Chem. Soc. 1998, 120, 4295.
Figure 3. X-ray structure of the [3]pseudorotaxane (8) formed between
R,R-bis(1-pyrenylmethoxy)-1,4-xylene and macrocycle 5.
from a solution containing stoichiometric quantities of palladium-
(II) acetate, 8-hydroxyquinoline, and macrocycle 5, simply by
adding triethylamine to deprotonate the ligand. Single-crystal X-ray
analysis shows that complex 7 is in fact a [3]pseudorotaxane (Figure
2), with a macrocycle complexed to each of the two quinolinolato-
(1-) ligands.
(7) (a) Hamilton, D. G.; Sanders, J. K. M.; Davies, J. E.; Clegg, W.; Teat, S.
J. Chem. Commun. 1997, 897. (b) Hamilton, D. G.; Davies, J. E.; Prodi,
L.; Sanders, J. K. M. Chem. Eur. J. 1998, 4, 608. (c) Zhang, Q.; Hamilton,
D. G.; Feeder, N.; Teat, S. J.; Goodman, J. M.; Sanders, J. K. M. New. J.
Chem. 1999, 23, 897. (d) Hamilton, D. G.; Prodi, L.; Feeder, N.; Sanders,
J. K. M. J. Chem. Soc.; Perkin Trans. 1 1999, 1057. (e) Hamilton, D. G.;
Montalti, M.; Prodi, L.; Fontani, M.; Zanello, P.; Sanders, J. K. M. Chem.
Eur. J. 2000, 6, 608. (f) Hansen, J. G.; Feeder, N.; Hamilton, D. G.; Gunter,
M. J.; Becher, J.; Sanders, J. K. M. Org. Lett. 2000, 2, 449.
(8) See, for example: High Performance Polymers: Their Origin and
DeVelopment; Seymour, R. B., Kirshenbaum, G. S., Eds.; Elsevier: New
York, 1986; also Polyimides; Wilson, D., Stenzenberger, H. D., Hergen-
rother, P. M., Eds.; Blackie: London, 1990.
In complex 7, the two macrocycles are related by a crystal-
lographic inversion center at palladium. The oxyquinoline ring
system π-stacks with the macrocycle in a rather different fashion
to that of the perylene molecule in 6, interacting mainly with the
naphthalenetetracarboximide residue (interplanar separation 3.46
Å) and having little geometric overlap with the biphenylene unit
(closest approach 4.00 Å). Double-encirclement of a central “thread”
is also demonstrated in the [3]pseudorotaxane 8 (Figure 3), whereby
two pyrene ring systems, linked by a 1,4-xylenyldi(oxymethylene)
spacer, interact with two molecules of 5. The π-π stacking
interactions involve both imide and biphenylenedisulfone residues,
(9) Kamenar, B.; Prout, C. K.; Wright, J. D. J. Chem. Soc. A 1966, 661.
JA027851M
9
J. AM. CHEM. SOC. VOL. 124, NO. 45, 2002 13347