10.1002/chem.201801433
Chemistry - A European Journal
COMMUNICATION
[1]
When two or more substances that produces an effect greater than the sum of their individual effects can be considered as synergism. In addition, two or
more entities working or acting together willingly for a common purpose or benefit involving mutual assistance in working towards a common goal is
considered cooperativity. According to these similar definitions we establish that a synergy can be produced by two catalysts in a double activation catalysis
or in a single activation catalysis. It is convenient to point that a dual o bifunctional catalysis: a) S. Matsunaga, M. Shibasaki, Chem. Commun. 2014, 50,
1044-1057; (or even a cascade catalysis) are not considered as cooperative or synergistic processes: b) A. E. Allen, D. W. C. MacMillan, Chem. Sci. 2012,
3, 633-658.
[2]
[3]
In nature, for example, reductases or oxidases are combining with NADP+/NADPH cofactor allowing hyghly efficient specific cooperative asymmetric
transformations. a) Multiheme Cytochromes (Eds.: C. A. Salgueiro, J. M. Dantas), Springer, Berlin, 2016; b) Monooxygenase, Peroxidase and Peroxygenase
Properties and Mechanisms of Cytochrome P450 (Advances in Experimental Medicine and Biology), (Eds.: E. G. Hrycay, S. M. Bandiera), Springer, Berlin,
2016.
For recent reviews and books, see: a) Homo- and Heterobimetallic Complexes in Catalysis: Cooperative Catalysis, (Ed.: P. Kalck), Springer, Berlin, 2016; b)
M.-H. Wang, K. A. Scheidt, Angew. Chem. 2016, 128,15134–15145; Angew. Chem. Int. Ed. 2016, 55, 14912-14922; c) S. Afewerki, A. Córdova, Chem. Rev.
2016, 116, 13512-13570; d) D. S. Kim, W.-J. Park, C.-H. Jun, Chem. Rev. 2017, 117, 8977–9015.
[4]
[5]
The employment of a chiral catalyst and a racemic catalyst has been frequently used in this cooperative mode.
a) S. Krautwald, D. Sarlah, M. A. Schafroth, E. M. Carreira, Science, 2013, 340, 1065-1068. b) S. Krautwald, M. A. Schafroth, D. Sarlah, E. M. Carreira, J.
Am. Chem. Soc., 2014, 136, 3020-3023. c) T. Sandmeier, S. Krautwald, H. F. Zipfel, E. M. Carreira, Angew. Chem. Int. Ed. 2015, 54, 14363-14367.
For recent examples of asymmetric cooperative [4+2] cycloadditions, see: a) Y.-C. Zhang, Q.-N. Zhu, X. Yang, L.-J. Zhou, F. Shi, J. Org. Chem. 2016, 81,
pp 1681–1688; b) H. Yao, Y. Zhou, X. Chen, P. Zhang, J. Xu, H. Liu, J. Org. Chem. 2016, 81, 8888-8899; c) D. B. Ramachary, P. S. Reddy, K. S. Shruthi,
R. Madhavachary, P. V. G. Reddy, Eur. J. Org. Chem. 2016, 5220-5226; d) L. A. Leth, F. Glaus, M. Meazza, L. Fu, M. K. Thogersen, E. A. Bitsch, K. A.
Jørgensen, Angew. Chem. 2016, 128, 15498-15502; Angew. Chem. Int. Ed. 2016, 55, 15272-15276; e) D.-F. Chen, T. Rovis, Synthesis 2017, 49, 293-298.
For recent examples of asymmetric cooperative [3+2] cycloadditions, see: a) V. Juste-Navarro, U. Uría, I. Delso, E. Reyes, T. Tejero, M. L. Carrillo, P. Merino,
J. L. Vicario, Chem. Eur. J. 2017, 23, 2764-2768; b) L. Naesborg, F. Tur, M. Meazza, J. Blom, K. S. Halskov, K. A. Jørgensen, Chem Eur. J. 2017, 23, 268-
272.
[6]
[7]
[8]
[9]
For a recent example of asymmetric cooperative [2+2+2] cycloaddition, see: M. Auge, A. Feraldi-Xypolia, M. Barbazanges, C. Aubert, L. Fensterbank, V.
Gandon, E. Kolodziej, C. Ollivier, Org. Lett. 2015, 17, 3754-3757.
For reviews dealing with general 1,3-DC, see: a) M. S. Singh, S. Chowdhury, S. Koley, Tetrahedron 2016, 72, 1603-1644; b) G. Pandey, D. Dey, S. K. Tiwari,
Tetrahedron Lett. 2017, 58, 699-705; c) H. A. Dondas, M. G. Retamosa, J. M. Sansano, Synthesis 2017, 49, 2819-2851.
[10] For reviews concerning catalytic enantioselective 1,3-DCs, see: a) T. Hashimoto, K. Maruoka, Chem. Rev. 2015, 115, 5366-5412; b) B. Bdiri, B.-J. Zhao, Z.-
M. Zhou, Tetrahedron: Asymmetry 2017, 28, 876-899.
[11] See, for example: a) H. Y. Kim, H. J. Shih, W. E. Knabe, K. Oh, Angew. Chem. Int. Ed. 2009, 48, 7420-7423; b) W. Zeng, G.-Y. Chen, Y.-G. Zhou, Y.-X. Li,
J. Am. Chem. Soc. 2007, 129, 750-751; c) E. Conde, D. Bello, A. de Cózar, M. Sánchez, M. A. Vázquez, F. P. Cossío, Chem. Sci. 2012, 3, 1486-1491; d) J.
Li, H. Kim, K. Oh, Org. Lett. 2015, 17, 1288-1291; e) Hybrid cinchona alkaloid-amino acid derived amidophosphanes (CA-AA-amidphos) acted, in combination
with silver salts, as mutifuntional catalysts. H. Wang, Q. Deng, Z. Zhou, S. Hu, Z. Liu, L.-Y. Zhou, Org. Lett. 2016, 18, 404-407.
[12] I. Chabour, L. M. Castelló, J. Mancebo-Aracil, M. Martín-Rodríguez, M. G. Retamosa, C. Nájera, J. M. Sansano, Tetrahedron: Asymmetry 2017, 28, 1423-
1429.
[13] See, for example: a) M. X. Xue, X.-M. Zhang, L.-Z. Gong, Synlett 2008, 691-694; b) W. Sun, G. Zhu, C. Wu, G. Li, L. Hong, R. Wang, Angew. Chem. Int. Ed.
2013, 52, 8633-8637; c) L. Wang, X. M. Shi, W. P. Dong, L. P. Zhu, R. Wang, Chem. Commun. 2013, 49, 3458-3460.
[14] A cooperative combination of AgF/hydrocinchonine and AgOAc/hydroquinine was independently published by Jørgensen’s and Xie’s group, respectively:
a) C. Alemparte, G. Blay, K. A. Jørgensen, Org. Lett. 2005, 7, 4569-4572; b) A. A. Agbodjan, B. E. Cooley, R. C. B. Copley, J. A. Corfield, R. C. Flanagan,
B. N. Glover, R. Guidetti, D. Haigh, P. D. Howes, M. M. Jackson, R. T. Matsuoka, K. J. Medhurst, A. Millar, M. J. Sharp, M. J. Slater, J. F. Toczko, S. Xie, J.
Org. Chem. 2008, 73, 3094-3102.
[15] For a recent review of chiral phosphoric acid catalysis, see: (a) D. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2014, 114, 9047–9153; (b) T.
Akiyama, K. Mori, Chem. Rev., 2015, 115, 9277–9306; (c) D. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2017, 117, 10608–10620.
[16] For recent reviews combining metals and Brønsted acids, see: (a) M. Mahlau, B. List, Angew. Chem. Int. Ed. 2013, 52, 518-533; Angew. Chem. 2013, 125,
540–556; (b) K. Brak, E. N. Jacobsen, Angew. Chem., Int. Ed. 2013, 52, 534-561; Angew. Chem. 2013, 125, 558–588; (c) D.-F. Chen, Z.-Y. Han, X.-L. Zhou,
L.-Z. Gong, Acc. Chem. Res. 2014, 47, 2365-2377.
[17] Enantioselective 1,3-DC mediated by silver carbonate gave better results under these reaction conditions. J. Mancebo-Aracil, C. Nájera, J. M. Sansano,
Tetrahedron: Asymmetry 2015, 26, 674-678.
[18] a) C Nájera, M. G. Retamosa, J. M. Sansano, Angew. Chem. 2008, 120, 6144 –6147; Angew. Chem. Int. Ed. 2008, 47, 6055-6058; b) C. Nájera, M. G.
Retamosa, M. Martín-Rodríguez, J. M. Sansano, A. de Cózar, F. P. Cossío, Eur. J. Org. Chem. 2009, 5622–5634.
[19] a) A. de Cózar, F. P. Cossío, Phys. Chem. Chem. Phys. 2011, 13, 10858-10868; b) E. E. Maroto, A. de Cózar, S. Filippone, A. Martín-Domenech, M. Suárez,
F. P. Cossío, N. Martín, Angew. Chem. Int. Ed. 2011, 90, 6060-6064; Angew. Chem. 2011, 123, 6184-6188; c) A. Pascual-Escudero, A. de Cózar, F. P.
Cossío, J. Adrio, J. C. Carretero, Angew. Chem. Int. Ed. 2016, 55, 15334-15338; Angew. Chem. 2016, 128, 15560-15564.
[20] a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789; b) A. D. Becke, J. Chem. Phys. 1993, 98, 1372-1377; c) A. D. Becke, J. Chem. Phys. 1993,
98, 5648-5652; d) Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241; e) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270-283; f) J. Tomasi,
B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3093; g) R. Cammi, B. Mennucci, J. Tomasi, J. Phys. Chem. A 2000, 104, 5631-5637; f) M. J. Frisch
et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2009 (see the Supporting Information for the full reference).
This article is protected by copyright. All rights reserved.