Journal of the American Chemical Society
Communication
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the National Natural Science
Foundation of China (No. 21374086), the NSF-EPSRC PIRE
program RENEW (EP/K034308/1), DFG (FG 1145, TS 39/
21-2), and the Leverhulme Foundation (RPG-2012-804). For
help with synchrotron experiments we thank Drs. Nick Terrill
and Jen Hiller (I22) at Diamond, Drs. Xiuhong Li and Feng
Tian (BL16B1) at SSRF, and Drs. Oier Bikondoa, Simon
Brown, and Paul Thompson (BM28-XMaS) at ESRF.
REFERENCES
(1) Tschierske, C. Chem. Soc. Rev. 2007, 36, 1930.
(2) Ungar, G.; Tschierske, C.; Abetz, V.; Holyst, R.; Bates, M. A.; Liu,
F.; Prehm, M.; Kieffer, R.; Zeng, X.; Walker, M.; Glettner, B.;
Zywocinski, A. Adv. Funct. Mater. 2011, 21, 1296.
■
(3) Prehm, M.; Liu, F.; Baumeister, U.; Zeng, X.; Ungar, G.;
Tschierske, C. Angew. Chem., Int. Ed. 2007, 46, 7972.
(4) Liu, F.; Kieffer, R.; Zeng, X.; Pelz, K.; Prehm, M.; Ungar, G.;
Tschierske, C. Nat. Commun. 2012, 3, 1104.
Figure 4. Double network structure of the Ia3d cubic phase with
̅
schematic representation of molecules forming it in some LC systems
of different types: (a) inverse lyotropic VII phase with water in the
channels,14 (b) widely reported polycatenar thermotropic LCs,15−18
(c) a polysiloxane with hemiphasmid polycatenar side groups,24 and
(d) the current skeletal network structure of H-bonded axial mesogen
bundles.
(5) Zeng, X. B.; Kieffer, R.; Glettner, B.; Nurnberger, C.; Liu, F.; Pelz,
̈
K.; Prehm, M.; Baumeister, U.; Hahn, H.; Lang, H.; Gehring, G. H.;
Weber, C. H. M.; Hobbs, J. K.; Tschierske, C.; Ungar, G. Science 2011,
331, 1302.
(6) Cheng, X. H.; Das, M. K.; Diele, S.; Tschierske, C. Angew. Chem.,
Int. Ed. 2002, 41, 4031.
(7) Patel, N. M.; Syed, I. M.; Rosenblatt, C.; Prehm, M.; Tschierske,
C. Liq. Cryst. 2005, 32, 55.
(8) Prehm, M.; Cheng, X. H.; Diele, S.; Das, M. K.; Tschierske, C. J.
Am. Chem. Soc. 2002, 124, 12072.
(9) Prehm, M.; Liu, F.; Zeng, X.; Ungar, G.; Tschierske, C. J. Am.
Chem. Soc. 2011, 133, 4906.
(10) Liu, F.; Prehm, M.; Zeng, X.; Ungar, G.; Tschierske, C. Angew.
Chem., Int. Ed. 2011, 50, 10599.
(11) Chandrasekhar, S.; Sadashiva, B. K.; Suresh, K. A. Pramana
1977, 9, 471.
(12) Percec, V.; Lee, M.; Heck, J.; Blackwell, H. E.; Ungar, G.;
constraint of interjunction distance being confined to an integer
number of molecular lengths. This new assembly mode can be
considered the fourth type of Cubbi LC phases (Figure 4d),
alongside the lyotropic case (Figure 4a), thermotropic phases
with rod, disc, or fan-shaped mesogens all lying perpendicular
to the network channel (Figure 4b),13,15,20 and a reported case
of a polymer with polysiloxane backbones in the channels and
the rod-like side groups in the surrounding continuum (Figure
4c).24 Thus, the present work expands the scope of the recently
discovered family of axial bundle mesophases.9,10 Furthermore,
the polyphilic molecular structure (aromatic, aliphatic, fluorous,
and polar segments) is shown to result in LC phases of
increased structural complexity.25 The segregation between the
rigid cores and flexible chains provides the double gyroid
skeleton, and the hydrocarbon−fluorocarbon segregation leads
to a tricontinuous core−shell structure. Moreover, the polar
glycerol domains of appreciable size, contained within the
skeleton, can be considered as micellar (Figures 2i and 3b).
Overall, the present findings offer a source of new diversity in
soft 3D self-assembly and in controlling electro-optical
properties.
Alvarez-Castillo, A. J. Mater. Chem. 1992, 2, 931.
(13) Malthet
46, 875.
̂
e, J.; Levelut, A. M.; Nguyen, H. L. J. Phys., Lett. 1985,
(14) Gruner, S. M. J. Phys. Chem. 1989, 93, 7562.
(15) Levelut, A. M.; Clerc, M. Liq. Cryst. 1998, 24, 105.
(16) Kutsumizu, S. Curr. Opin. Solid State Mater. Sci. 2002, 6, 537.
(17) Alam, M. A.; Motoyanagi, J.; Yamamoto, Y.; Fukushima, T.;
Kim, J.; Kato, K.; Takata, M.; Saeki, A.; Seki, S.; Tagawa, S.; Aida, T. J.
Am. Chem. Soc. 2009, 131, 17722.
(18) Chvalun, S. N.; Shcherbina, M. A.; Yakunin, A. N.; Blackwell, J.;
Percec, V. Polym. Sci. Ser. A 2007, 49, 158.
(19) Scriven, L. E. Nature 1976, 263, 123.
(20) Ichikawa, T.; Yoshio, M.; Hamasaki, A.; Taguchi, S.; Liu, F.;
Zeng, X. B.; Ungar, G.; Ohno, H.; Kato, T. J. Am. Chem. Soc. 2012,
134, 2634.
(21) Weber, C. H. M.; Liu, F.; Zeng, X.-b.; Ungar, G.; Mullin, N.;
Hobbs, J. K.; Jahr, M.; Lehmann, M. Soft Matter 2010, 6, 5390.
(22) Ungar, G.; Liu, F.; Zeng, X. B.; Glettner, B.; Prehm, M.; Kieffer,
R.; Tschierske, C. J. Phys.: Conf. Ser. 2010, 247, 012032.
(23) Weber, P.; Guillon, D.; Skoulios, A.; Miller, R. D. Liq. Cryst.
1990, 8, 825.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures with complete spectral and structural
analysis. This material is available free of charge via the Internet
■
S
AUTHOR INFORMATION
Corresponding Authors
(24) Ungar, G.; Percec, V. Presented at the 14th International Liquid
Crystal Conference, Pisa, Italy, 1992.
(25) Tschierske, C. Angew. Chem., Int. Ed. 2013, 52, 8828.
■
Author Contributions
§F.L. and M.P. contributed equally.
6849
dx.doi.org/10.1021/ja502410e | J. Am. Chem. Soc. 2014, 136, 6846−6849