Journal of the American Chemical Society
Communication
(3) (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem.
Soc. Rev. 2008, 37, 320. (b) Muller, K.; Faeh, C.; Diederich, F. Science
2007, 317, 1881.
(4) Wood, K. A.; Hoskin, P. J.; Saunders, M. I. Clin. Oncol. 2007, 19,
237.
(5) Agdeppa, E. D.; Spilker, M. E. AAPS J. 2009, 11, 286.
(6) (a) Vallabhajosula, S.; Solnes, L.; Vallabhajosula, B. Semin. Nucl.
Med. 2011, 41, 246. (b) Koo, J.; Byun, Y. Arch. Pharm. Res. 2013, 36,
1178.
observed in the labeling product but with reversed
enantioselectivity. The fluorine transfer reactivity of the 18F−
MnIV−OH complex was further supported by density func-
tional theory (DFT) computations (Figure 5c). The activation
barrier of fluorine transfer from the F−MnIV−OH complex
(34) to the benzyl radical was only 9.6 kcal/mol in an acetone
solvent continuum. The molecular orbitals involved in the C−F
2
bond formation are the σ*(dz ) orbital of 34 and the benzyl
radical SOMO. The overall fluorine transfer process is
thermodynamically favored with a calculated free energy
change of −38.0 kcal/mol.
(7) Mach, R. H.; Schwarz, S. W. PET Clinics 2010, 5, 131.
(8) Le Bars, D. J. Fluorine Chem. 2006, 127, 1488.
(9) (a) Pike, V. W.; Aigbirhio, F. I. J. Chem. Soc., Chem. Commun.
1995, 2215. (b) Ross, T. L.; Ermert, J.; Hocke, C.; Coenen, H. H. J.
Am. Chem. Soc. 2007, 129, 8018.
(10) Hollingworth, C.; Hazari, A.; Hopkinson, M. N.; Tredwell, M.;
Benedetto, E.; Huiban, M.; Gee, A. D.; Brown, J. M.; Gouverneur, V.
Angew. Chem., Int. Ed. 2011, 50, 2613.
(11) Gao, Z.; Lim, Y. H.; Tredwell, M.; Li, L.; Verhoog, S.;
Hopkinson, M.; Kaluza, W.; Collier, T. L.; Passchier, J.; Huiban, M.;
Gouverneur, V. Angew. Chem., Int. Ed. 2012, 51, 6733.
(12) (a) Lee, E.; Hooker, J. M.; Ritter, T. J. Am. Chem. Soc. 2012,
134, 17456. (b) Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C.
N.; Boursalian, G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T.
Science 2011, 334, 639.
(13) Huiban, M.; Tredwell, M.; Mizuta, S.; Wan, Z.; Zhang, X.;
Collier, T. L.; Gouverneur, V.; Passchier, J. Nat. Chem. 2013, 5, 941.
(14) Graham, T. J. A.; Lambert, R. F.; Ploessl, K.; Kung, H. F.; Doyle,
A. G. J. Am. Chem. Soc. 2014, 136, 5291.
(15) Kamlet, A. S.; Neumann, C. N.; Lee, E.; Carlin, S. M.; Moseley,
C. K.; Stephenson, N.; Hooker, J. M.; Ritter, T. PLoS One 2013, 8, 10.
(16) Hollingworth, C.; Gouverneur, V. Chem. Commun. 2012, 48,
2929.
(17) (a) Firnau, G.; Chirakal, R.; Garnett, E. S. J. Nucl. Med. 1984, 25,
1228. (b) Chirakal, R.; Firnau, G.; Couse, J.; Garnett, E. S. Int. J. Appl.
Radiat. Isot. 1984, 35, 651.
(18) (a) Liu, W.; Huang, X.; Groves, J. T. Nat. Protoc. 2013, 8, 2348.
(b) Liu, W.; Groves, J. T. Angew. Chem., Int. Ed. 2013, 52, 6024.
(c) Liu, W.; Huang, X.; Cheng, M.-J.; Nielsen, R. J.; Goddard, W. A.,
III; Groves, J. T. Science 2012, 337, 1322. (d) Liu, W.; Groves, J. T. J.
Am. Chem. Soc. 2010, 132, 12847.
In conclusion, we have developed a facile, no-carrier-added,
18F labeling method that allows efficient late-stage labeling of a
variety of organic molecules and known drugs. The reaction is
operationally simple, requiring no dry-down operations, and is
tolerant of both moisture and air. This protocol can be
immediately adapted in any laboratory site with a basic PET
chemistry infrastructure. We are working to expand the concept
of 18F labeling via direct C−H activation demonstrated in this
study.
ASSOCIATED CONTENT
■
S
* Supporting Information
Detailed experimental procedures, spectroscopic data for all
new compounds, and details for DFT calculation. This material
AUTHOR INFORMATION
■
Corresponding Authors
Author Contributions
∥X.H. and W.L. contributed equally.
Notes
The authors declare no competing financial interest.
(19) (a) Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc.
2006, 128, 7134. (b) Wang, X.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc.
2009, 131, 7520. (c) Bloom, S.; Pitts, C. R.; Woltornist, R.; Griswold,
A.; Holl, M. G.; Lectka, T. Org. Lett. 2013, 15, 1722. (d) Amaoka, Y.;
Nagatomo, M.; Inoue, M. Org. Lett. 2013, 15, 2160. (e) Xia, J.-B.; Zhu,
C.; Chen, C. J. Am. Chem. Soc. 2013, 135, 17494. (f) Bloom, S.; Pitts,
C. R.; Miller, D. C.; Haselton, N.; Holl, M. G.; Urheim, E.; Lectka, T.
Angew. Chem., Int. Ed. 2012, 51, 10580. (g) Fier, P. S.; Hartwig, J. F.
Science 2013, 342, 956.
ACKNOWLEDGMENTS
■
This research was supported by the Center for Catalytic
Hydrocarbon Functionalization, an Energy Frontier Research
Center, U.S. Department of Energy, Office of Science, Basic
Energy Sciences, under Award No. DE SC0001298 (J.T.G.).
Fluorination of biomolecules was supported by the US National
Science Foundation award CHE-1148597 (J.T.G.). A portion
of this research was carried out at Martinos Center for
Biomedical Imaging using resources provided by the Center for
Functional Neuroimaging Technologies, P41EB015896, and
shared instrumentation grants S10RR017208 and
S10RR023452. H.R. was supported by a US Dept. of Energy
radiochemistry training grant DE-SC0008430 (J.M.H.). X.H.
thanks the Howard Hughes Medical Institute for fellowship
support. W.L. thanks Merck, Inc. for fellowship support. The
authors also thank Prof. A. G. Doyle and T. Graham for helpful
discussions.
(20) (a) McMurtrey, K. B.; Racowski, J. M.; Sanford, M. S. Org. Lett.
2012, 14, 4094. (b) Braun, M.-G.; Doyle, A. G. J. Am. Chem. Soc. 2013,
135, 12990.
(21) Marik, J.; Sutcliffe, J. L. Tetrahedron Lett. 2006, 47, 6681.
REFERENCES
■
(1) (a) Phelps, M. E. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 9226.
(b) Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Angew. Chem., Int.
Ed. 2008, 47, 8998. (c) Ametamey, S. M.; Honer, M.; Schubiger, P. A.
Chem. Rev. 2008, 108, 1501.
(2) Tredwell, M.; Gouverneur, V. Angew. Chem., Int. Ed. 2012, 51,
11426.
6845
dx.doi.org/10.1021/ja5039819 | J. Am. Chem. Soc. 2014, 136, 6842−6845