ChemComm
Communication
Table 2 Contact length and angles from the palladium atom to the shifted protons in complexes 5a,c–d and 6
R1
d1
c1
y1
d2
c2
y2
iPr 5a
2.635
2.723
2.581
2.584; 2.586
129.90
123.58
128.83
129.33; 128.75
81.18
78.36
82.55
84.67; 83.97
2.463
2.447
2.299
—
113.12
115.23
119.14
—
69.71
69.67
70.40
—
CH2Ph 5c
Me 5d
iPr 6
c1 = Pd–H3–C3 [1]; c2 = Pd–H24b–C24 [1]; y1 = N1–Pd–H3 [1]; y2 = N1–Pd–H24b [1]; d1, d2 [Å].
6 J. Ruiz, J. Lorenzo, C. Vicente, g. Lopez, J. M. Lopez-de-Luzuriaga,
M. Monge, F. X. Avile’s, D. Bautista, V. Moreno and A. Laguna, Inorg.
Chem., 2008, 47, 6990–7001.
7 C. Taubmann, K. Ofele, E. Herdtweck and W. A. Herrmann,
Organometallics, 2009, 28, 4254–4257.
8 M. S. Khalaf, S. H. Oakley, M. P. Coles and P. B. Hitchcock, Dalton
Trans., 2010, 39, 1635–1642.
9 H. V. Huynh, Y. Han, J. Hui Hui Ho and G. K. Tan, Organometallics,
2006, 25, 3267–3274.
10 Y. Zhang, J. C. Lewis, R. G. Bergman, J. A. Ellman and E. Oldfield,
Organometallics, 2006, 25, 3515–3519.
11 J. E. Barquera-Lozada, A. Obenhuber, C. Hauf and W. Scherer,
J. Phys. Chem. A, 2013, 117, 4304–4315.
12 J. C. Lewis, J. Wu, R. G. Bergman and J. A. Ellman, Organometallics,
2005, 24, 5737–5746.
13 M. Brookhart and M. L. H. Green, J. Organomet. Chem., 1983, 250,
395–408.
14 M. Brookhart, M. L. Green and G. Parkin, Proc. Natl. Acad. Sci.
U. S. A., 2007, 104, 6908–6914.
15 W. H. Pirkle and T. J. Sowin, J. Org. Chem., 1987, 52, 3011–3017.
16 A. Marxer, H. R. Rodriguez, J. M. McKenna and H. M. Tsai, J. Org.
Chem., 1975, 40, 1427–1433.
spectra of complexes 5d and 6 underlines this assumption
(Table 2). The proton NMR of complex 6 registers a 2 : 1 equilibrium
of two species in solution, both with an astonishing downfield
shift of the aryl proton H3 of more than 4.1 ppm (d = 12.06 and
12.03 ppm), interpreted as equilibrium between the chelated
complex 6 and its dimeric isomer. The latter was ascertained as
crystal structure, exhibiting an angle y of about 841, thus closer to
the perpendicular angle than in the case of 5d, but with the
distance d essentially remaining the same.
Also the results of a QTAIM analysis carried out with the
electron density of 5d from a DFT/BP86/def2-TZVP calculation
corroborate these results. The density exhibits bond paths with
bond critical points that connect Pd with H3 and H24b. At both
bond critical points the charge density is, however, only small
(1.9 ꢁ 10ꢀ2 au for Pd–H3 and 2.7 ꢁ 10ꢀ2 au for Pd–H24b) and
has a positive Laplacian (5 ꢁ 10ꢀ2 for Pd–H3 and 8 ꢁ 10ꢀ2 for
Pd–H24b). These characteristics fit well to anagostic interactions
between Pd and H3 and H24b and substantiate that in 5d the
interaction of Pd with H24b is slightly stronger than with H3, in
accordance with the experimental findings and the model
developed by Scherer et al.11
¨
17 L. Pignataro, S. Carboni, M. Civera, R. Colombo, U. Piarulli and
C. Gennari, Angew. Chem., Int. Ed., 2010, 49, 6633–6637.
¨
18 K. Bert, T. Noel, W. Kimpe, J. L. Goeman and J. Van der Eycken, Org.
Biomol. Chem., 2012, 10, 8539–8550.
19 T. Noel, K. Vandyck, K. Robeyns, L. Van Meervelt and J. Van der
Eycken, Tetrahedron, 2009, 65, 8879–8884.
20 B. Yao, C. Jaccoud, Q. Wang and J. Zhu, Chem. – Eur. J., 2012, 18,
5864–5868.
21 S. Mehta, T. Yao and R. C. Larock, J. Org. Chem., 2012, 77,
10938–10944.
22 K. Kobayashi, S. Fujita, D. Nakai, S. Fukumoto, S. Fukamachi and
H. Konishi, Helv. Chim. Acta, 2010, 93, 1274–1280.
23 K. M. Allan, C. D. Gilmore and B. M. Stoltz, Angew. Chem., Int. Ed.,
2011, 50, 4488–4491.
In summary, we have developed a bidentate ligand which
exhibits rare anagostic interactions of aromatic and aliphatic
protons upon complexation with a palladium salt. Astonishing
downfield shifts of aliphatic and aromatic protons were correlated
with geometric factors of the corresponding X-ray structures.
24 (a) H. Yoshida, H. Fukushima, T. Morishita, J. Ohshita and A. Kunai,
Tetrahedron, 2007, 63, 4793–4805; (b) H. Yoshida, H. Fukushima,
J. Ohshita and A. Kunai, Angew. Chem., Int. Ed., 2004, 43, 3935–3938.
Notes and references
1 W. Yao, O. Eisenstein and R. H. Crabtree, Inorg. Chim. Acta, 1997, 25 K. Tani, D. C. Behenna, R. M. McFadden and B. M. Stoltz, Org. Lett.,
254, 105–111. 2007, 9, 2529–2531.
2 J. L. Haller, M. J. Page, S. A. Macgregor, M. F. Mahon and 26 C. Bolm, K. Muniz-Fernandez, A. Seger, G. Raabe and K. Gu¨nther,
¨
M. K. Whittlesey, J. Am. Chem. Soc., 2009, 131, 4604–4605.
3 A. E. Shilov and G. B. Shul’pin, Chem. Rev., 1997, 97, 2879–2932.
J. Org. Chem., 1998, 63, 7860–7867.
27 A. I. Mayer and M. A. Hanagan, Tetrahedron, 1983, 39, 1991–1999.
4 W. Scherer, V. Herz, A. Bru¨ck, C. Hauf, F. Reiner, S. Altmannshofer, 28 I. M. Dordor, J. M. Mellor and P. D. Kennewell, J. Chem. Soc., Perkin
D. Leusser and D. Stalke, Angew. Chem., Int. Ed., 2011, 50, 2845–2849. Trans. 1, 1984, 6, 1253–1258.
5 R. Angamuthu, L. L. Gelauff, M. A. Siegler, A. L. Spek and 29 T. Noel, K. Robeyns, L. Van Meervelt, E. Van der Eycken and
E. Bouwman, Chem. Commun., 2009, 2700–2702.
J. Van der Eycken, Tetrahedron: Asymmetry, 2009, 20, 1962–1968.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 5909--5911 | 5911