Page 3 of 4
ChemComm
Please do not adjust margins
Journal Name
COMMUNICATION
On the basis of these results, 21 a plausible mechanism was financial support of this research. The authors thank Dr.
DOI: 10.1039/C9CC05207K
proposed (Scheme 4). The reaction was initiated by the Bingxin Yuan (ZZU) for helpful discussions and comments.
nucleophilic attack of the phosphine catalyst on the allenoates
2 to form intermediates A or B. We hypothesized that the
phosphine might impose different inducing effects to achieve
Conflicts of interest
site selectivity, which depended on the Lewis basicity. The
electron-rich PBu3 is more prone to A, while B is preferred by
the electron-deficient (4-FC6H4)3P. Intermediates A and B
undergo addition reaction with 1 to produce intermediate C
and E, respectively. The following annulation reaction and
proton-transfer process lead to the formation of 3 or 4 with
the regeneration of the catalyst.
The authors declare no competing financial interests.
Notes and references
1
2
3
P. M. Dewick, Medicinal Natural Products; Wiley: Hoboken,
NJ, 2009; pp 7−38.
W. F. J., Karstens, P. G. M. Conti, C. M. Timmers, R. Plate, C. J.
Van Koppen, WO 2009027482, 2009.
(a) C. Liu, Z. Zeng, R. Chen, X. Jiang, Y. Wang, Y. Zhang, Org.
Lett. 2016, 18, 624; (b) J. Deng, B. Zhu, Z. Lu, H. Yu, A. Li, J.
Am. Chem. Soc. 2012, 134, 920.
CO2Me
2
PBu3
P(4-FC6H4
)
3
path B
path A
4
5
M. Tomita, Y. Okamoto, T. Kikuchi, K. Osaki, M. Nishikawa, K.
Kamiya, Y. Sasaki, K. Matoba, K. Goto, Chem. Pharm. Bull.
1971, 19, 770.
P(4-FC6H4
)
3
PBu3
MeO2
C
CO2Me
A
B
Selected examples, see: (a) J. Wu, Y. Tang, W. Wei, Y. Wu, Y.
Li, J. Zhang, Y. Zheng, S. Xu, Angew. Chem. Int. Ed. 2018, 57,
6284; (b) Y. Qiu, B. Yang, C. Zhu, J.-E. Bӓckvall, Chem. Sci.
2017, 8, 616; (c) J. Min, G. Xu, J. Sun, J. Org. Chem. 2017, 82,
5492. (d) G. Zhang, W. Xu, J. Liu, D. K. Das, S. Yang, S.
Perveen, H. Zhang, X. Li, X. Fang, Chem. Commun. 2017, 53,
13336.
MeO2
C
Ph
CO2Me
MeO2
C
1
Ph
CO2Me
1
P(4-FC6H4
)
3
MeO2
C
CO2Me
PBu3
CO2Me
Ph
CO2Me
E
6
7
C. Zhang, X. Lu, J. Org. Chem. 1995, 60, 2906.
Ph
(a) H. C. Guo, Y. C. Fan, Z. Sun, Y. Wu, O. Kwon, Chem. Rev.
2018, 118, 10049; (b) T. Wang, X. Han, F. Zhong, W. Yao, Y.
Lu, Acc. Chem. Res. 2016, 49, 1369; (c) P. Xie, Y. Huang, Org.
Biomol. Chem. 2015, 13, 8578; (d) Z. Wang, X. Xu, O. Kwon,
Chem. Soc. Rev. 2014, 43, 2927; (e) P. Xie, Y. Huang, Eur. J.
Org. Chem. 2013, 6213; (f) Y. Wei, M. Shi, Chem. Rev. 2013,
113, 6659; (g) B. J. Cowen, S. Miller, Chem. Soc. Rev. 2009,
38, 3102; (h) L.-W. Ye, J. Zhou, Y. Tang, Chem. Soc. Rev. 2008,
37, 1140; (i) V. Nair, R. S. Menon, A. R. Sreekanth, N.
Abhilash, A. T. Biju, Acc. Chem. Res. 2006, 39, 520; (j) X. Lu, C.
Zhang, Z. Xu, Acc. Chem. Res. 2001, 34, 535; (k) H. Ni, W.-L.
Chan, Y. Lu, Chem. Rev. 2018, 118, 9344.
MeO2
C
CO2Me
P(4-FC6H4
)
3
C
MeO2
C
CO2Me
Ph
CO2Me
F
PBu3
CO2Me
-P(4-FC6H4
)
3
1,2-H shift
Ph
MeO2
C
CO2Me
D
MeO2
C
CO2Me
CO2Me
1,2-H shift
-PBu3
Ph
3
CO2Me
CO2Me
Ph
8
9
X. Meng, Y. Huang, R. Chen, Org. Lett. 2009, 11, 137.
X.-F. Zhu, C. E. Henry, J. Wang, T. Dudding, O. Kwon, Org.
Lett. 2005, 7, 1387.
MeO2
C
4
Scheme 4. Proposed mechanism
10 Z. Lu, S. Zheng, X. Zhang, X. Lu, Org. Lett. 2008, 10, 3267.
11 For selected examples of [3 + 2] annulation of allenoates,
see: (a) H. Wang, J. Zhang, Y. Tu, J. Zhang, Angew. Chem. Int.
Ed. 2019, 58, 5422; (b) J.-Q. Zhao, L. Yang, Y. You, Z.-H.
Wang, K.-X. Xie, X.-M. Zhang, X.-Y. Xu, W.-C. Yuan, Org.
Biomol. Chem. 2019, 17, 5294; (c) Z. Yu, Z. Jin, M. Duan, R.
Bai, Y. Lu, Y. Lan, J. Org. Chem. 2018, 83, 9729. (d) H. Ni, Z.
Yu, W. Yao, Y. Lan, N. Ullah, Y. Lu, Chem. Sci. 2017, 8, 5699;
(e) L. Zhou, C. Wang, C. Yuan, H. Liu, C. Zhang, H. Guo, Org.
Lett. 2018, 20, 6591; (f) C. E. Henry, Q. Xu, Y. C. Fan, T. J.
Martin, L. Belding, T. Dudding, O. Kwon, J. Am. Chem. Soc.
2014, 136, 11890; (g) X. Han, Y. Wang, F. Zhong, Y. Lu, J. Am.
Chem. Soc. 2011, 133, 1726; (h) Z. R. Xu, X. Y. Lu, J. Org.
Chem. 1998, 63, 5031.
12 (a) S. Kramer, G. C. Fu, J. Am. Chem. Soc. 2015, 137, 3803; (b)
Q. Zhang, L. Yang, X. Tong, J. Am. Chem. Soc. 2010, 132,
2550.
13 For selected examples of [4 + 2] annulation of α-substituted
allenoates, see: (a) Q. Zhang, H. Jin, J. Feng, Y. Zhu, P. Jia, C.
Wu, Y. Huang, Org. Lett. 2019, 21, 1407; (b) H. Liu, Y. Liu, C.
Yuan, G.-P. Wang, S.-F. Zhu, Y. Wu, B. Wang, Z. Sun, Y. Xiao,
Q.-L. Zhou, H. Guo, Org. Lett. 2016, 18, 1302; (c) T. Wang, S.
Ye, Org. Lett. 2010, 12, 4168; (d) S. Castellano, H. D. G. Fiji, S.
S. Kinder-man, M. Watanabe, P. de Leon, F. Tamanoi, O.
Conclusions
In summary, we have designed and developed a phosphine
catalyzed site selective annulations of γ-substituted allenoates
with conjugated dienes. The impact of catalyst and substrate
on the final product suggest that the activity and selectivity
could be tuned through appropriate molecular engineering.
The method has also enabled the selective preparation of
cyclohexenes and cyclopentenes in good yields. Further
studies on an asymmetric version of these annulations and
applications for the synthesis of biologically active molecules
are underway.
We are grateful to the National Natural Science Foundation
of China (No. 21702189, 21672193, 21272218), China
Postdoctoral Science Foundation (No. 2017M610458,
2018T110737), Postdoctoral Research Grant in Henan Province
(No. 001701006) and Zhengzhou University of China for
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins