Journal of the American Chemical Society
Communication
(12) Dualeh, A.; Delcamp, J. H.; Nazeeruddin, M. K.; Gratzel, M.
̈
was utilized. The measured kCS and kCR were found to be 7.14
× 1010 and 2.93 × 109 s−1, respectively. The estimated errors in
the kinetic values are not more than 10%. The charge
recombination proceeded in populating the triplet state of the
sensitizers prior to returning to the ground state, as witnessed
from the developing triplet features at higher timescales in the
femtosecond transient spectra in Figure 4.
In summary, the present work reports the synthesis and
characterization of three new donor−acceptor dyads derived
from thieno-pyrrole-fused BODIPY and fullerene. The SBDPiR
macrocycle in these dyads acted as near-IR sensitizers and
revealed ultrafast photoinduced electron transfer (PET) to the
covalently linked fullerene as revealed by femtosecond transient
absorption studies. The charge recombination was 1−2 orders
of magnitude slower, a predicted trend for fullerenes due to
their low reorganization energy demand in electron transfer
reactions.30 The present class of dyads is important not only for
harvesting light energy from the near-IR region but also in
building optoelectronic devices operating under near-IR light as
the excitation source. Further studies along this line are in
progress in our laboratories.
Appl. Phys. Lett. 2012, 100, 173512−173514.
(13) Arunkumar, E.; Ajayaghosh, A. Chem. Commun. 2005, 5, 599−
601.
(14) Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891−4932.
(15) Umezawa, K.; Nakamura, H.; Makino, D.; Citterio, D.; Suzumi,
K. J. Am. Chem. Soc. 2008, 130, 1550−1551.
(16) Kamkaew, A.; Lim, S. H.; Bee, H. B.; Kiew, L. Y.; Chung, L. Y.;
Burgess, K. Chem. Soc. Rev. 2013, 42, 77−88.
(17) Awuah, S. G.; You, Y. RSC Adv. 2012, 2, 11169−11183.
(18) Ulrich, G.; Ziessel, R.; Harriman, A. Angew. Chem., Int. Ed. 2008,
47, 1184−1201.
(19) El-Khouly, M. E.; Fukuzumi, S.; D’Souza, F. ChemPhysChem
2014, 15, 30−47.
(20) Imahori, H.; Norieda, H.; Yamada, H.; Nishimura, Y.; Yamazaki,
I.; Sakata, Y.; Fukuzumi, S. J. Am. Chem. Soc. 2001, 123, 100−110.
(21) Engelhardt, V.; Khuri, S.; Fleischhauer, J.; Garcia-Iglesias, M.;
Gonzalez-Rodriguez, D.; Bottari, G.; Torres, T.; Guldi, D. M.; Faust,
R. Chem. Sci. 2013, 4, 3888−3892.
(22) Awuah, S. G.; Das, S. K.; D’Souza, F.; You, Y. Chem.Asian J.
2013, 8, 3123−3132.
(23) Amin, A. N.; El-Khouly, M. E.; Subbaiyan, N. K.; Zandler, M. E.;
Fukuzumi, S.; D’Souza, F. Chem. Commun. 2012, 48, 206−208.
(24) Bandi, V.; El-Khouly, M. E.; Ohkubo, K.; Nesterov, V. N.;
Zandler, M. E.; Fukuzumi, S.; D’Souza, F. J. Phys. Chem. C 2014, 118,
2321−2332.
ASSOCIATED CONTENT
■
S
* Supporting Information
(25) Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem. Soc. 1993,
115, 9798−9799.
(26) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.,
Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M. et al.
Gaussian 03; Gaussian, Inc.: Pittsburgh, PA, 2003.
Synthetic, experimental, and complete citation details of ref 26;
Maldi-mass and IR; HOMO and LUMO orbitals of dyads;
DPV of pristine SBDPiR and fulleropyrrolidine; an energy level
diagram showing photochemical events; and spectra of
femtosecond and nanosecond transient and chemically oxidized
SBDPiR probes. This material is available free of charge via the
(27) Smith, P. M.; McCarty, A. L.; Nguyen, N. Y.; Zandler, M. E.;
D’Souza, F. Chem. Commun. 2003, 1754−1755.
(28) Rehm, D.; Weller, A. Isr. J. Chem. 1970, 7, 259−271.
(29) −ΔGSCS = ΔE0−0 − e(Eox − Ered) − Esol, ΔE0−0 is the energy of
the lowest excited state of SBDPiR being 1.76, 1.65 and 1.46 eV
(estimated) for SBDPiR 690, SBDPiR 731, and SBDPiR 840,
respectively. Symbols Eox and Ered correspond to the first oxidation
potential of SBDPiR derivatives and the first reduction potential of
C60, respectively. Symbol Esol is electrostatic energy derived from the
distance between the electron donor and acceptor using the
continuum model.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
(30) Imahori, H.; Hagiwara, K.; Akiyama, T.; Aoki, M.; Taniguchi, S.;
Okada, T.; Shirakawa, M.; Sakata, Y. Chem. Phys. Lett. 1996, 263, 545−
550.
ACKNOWLEDGMENTS
■
This work was supported by the National Science Foundation
(Grant 1110942 to F.D.) and OCAST (HR11-58 to Y.Y.).
REFERENCES
■
(1) Photoinduced Electron Transfer; Fox, M. A., Chanon, M., Eds.;
Elsevier: Amsterdam, 1988; Part A−D.
(2) Electron Transfer in Chemistry; Balzani, V., Ed.; Wiley-VCH:
Weinheim, 2001, Vols. 1−5.
(3) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2009, 42,
1890−1898.
(4) Fukuzumi, S.; Kojima, T. J. Mater. Chem. 2008, 18, 1427−1439.
(5) Fukuzumi, S.; Ohkubo, K.; D’Souza, F.; Sessler, J. L. Chem.
Commun. 2012, 48, 9785−9940.
(6) Wasielewski, M. R. Acc. Chem. Res. 2009, 42, 1910−1921.
(7) Sanchez, L.; Martín, N.; Guldi, D. M. Angew. Chem., Int. Ed. 2005,
44, 5374−5382.
(8) Bottari, G.; de la Torre, G.; Guldi, D. M.; Torres, T. Chem. Rev.
2010, 110, 6768−6816.
(9) El-Khouly, M. E.; Ito, O.; Smith, P. M.; D’Souza, F. J. Photochem.
Photobiol. C 2004, 5, 79−104.
(10) D’Souza, F.; Ito, O. Chem. Soc. Rev. 2012, 41, 86−96.
(11) Tkachenko, N. V.; Lemmetyinen, H. In Handbook of Carbon
Nanomaterials, D’Souza, F.; Kadish, K. M., Eds.; World Scientific
Publications: Singapore, 2011; Chapter 13, pp 405−440.
D
dx.doi.org/10.1021/ja503015f | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX