UPDATES
Chen-Yu Tang et al.
3054, 2979, 1684, 1627, 1277, 1180 cmÀ1; HR-MS (EI): m/z=
307.1212, calcd. for C19H17NO3 (M+): 307.1208.
Acknowledgements
We are grateful for the financial support from National Natu-
ral Science Foundation of China (Project Nos. 21102043), the
China Postdoctoral Science Foundation (Project Nos.
20110490070, and 2012T50401) and the Fundamental Re-
search Funds for the Central Universities.
References
[1] a) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem.
Rev. 2010, 110, 624; b) T. W. Lyons, M. S. Sanford,
Chem. Rev. 2010, 110, 1147; c) P. B. Arockiam, C. Bru-
neau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879; d) G.
Song, F. Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651;
e) D.-H. Wang, K. M. Engle, B.-F. Shi, J.-Q. Yu, Science
2010, 327, 315; f) F. W. Patureau, T. Besset, F. Glorius,
Angew. Chem. 2011, 123, 1096; Angew. Chem. Int. Ed.
2011, 50, 1064; g) M. D. K. Boele, G. P. F. van Strij-
donck, A. H. M. de Vries, P. C. J. Kamer, J. G. de Vries,
P. W. N. M. van Leeuwen, J. Am. Chem. Soc. 2002, 124,
1586; h) F. W. Patureau, F. Glorius, J. Am. Chem. Soc.
2010, 132, 9982; i) L. Ackermann, L. Wang, R. Wolf-
ram, A. V. Lygin, Org. Lett. 2012, 14, 728; j) A. S. Tsai,
M. Brasse, R. G. Bergman, J. A. Ellman, Org. Lett.
2011, 13, 540; k) N. Umeda, K. Hirano, T. Satoh, M.
Miura, J. Org. Chem. 2009, 74, 7094; l) G. Cai, Y. Fu,
Y. Li, X. Wan, Z.-J. Shi, J. Am. Chem. Soc. 2007, 129,
7666.
[2] a) M. Miura, T. Tsuda, T. Satoh, S. Pivsa-Art, M.
Nomura, J. Org. Chem. 1998, 63, 5211; b) K. Ueura, T.
Satoh, M. Miura, Org. Lett. 2007, 9, 1407; c) T.
Ueyama, S. Mochida, T. Fukutani, K. Hirano, T. Satoh,
M. Miura, Org. Lett. 2011, 13, 706; d) L. Ackermann, J.
Pospech, Org. Lett. 2011, 13, 4153; e) S. Mochida, K.
Hirano, T. Satoh, M. Miura, Org. Lett. 2010, 12, 5776;
f) K. Ueura, T. Satoh, M. Miura, J. Org. Chem. 2007,
72, 5362; g) S. Mochida, K. Hirano, T. Satoh, M. Miura,
J. Org. Chem. 2011, 76, 3024; h) S. Mochida, K. Hirano,
T. Satoh, M. Miura, J. Org. Chem. 2009, 74, 6295.
[3] a) R. Samanta, R. Narayan, A. P. Antonchick, Org.
Lett. 2012, 14, 6108; b) K. Padala, M. Jeganmohan,
Org. Lett. 2012, 14, 1134.
Scheme 4. Plausible mechanism.
simple phenolic OH and aniline NH2 groups were
successfully introduced as efficient directing groups,
which are ubiquitous structural units in natural prod-
ucts and provide for the ready transformation of the
2-olefinated products to other interesting skeletons.
The Michael reaction of the so obtained 2-vinylin-
doles was also revealed to furnish fused heterocyclic
compounds in a one-pot or a stepwise manner. Due
to the high selectivity of the reaction, the wide scope
of the substrates, the good-to-excellent yields and the
promising utilization of the products, this methodolo-
gy may be of great potential value.
Experimental Section
Typical Procedure
Under a nitrogen atmosphere, 2-(1H-indol-1-yl)phenol (1a)
(62.8 mg, 0.3 mmol), [Cp*RhCl2]2 (3.7 mg, 0.006 mmol) and
CuACHTUNGTRENNUNG(OAc)2·H2O (125.7 mg, 0.63 mmol) were added to a 25-
mL Schlenk tube equipped with a magnetic stirrer. Then
2.5 mL of DMA and ethyl acrylate (2a) (45.0 mg,
0.45 mmol) were added. The reaction mixture was stirred at
808C. When the reaction was complete as monitored by
TLC, the reaction mixture was filtered through a short
column of silica gel and eluted with CH2Cl2. The filtrate was
concentrated under reduced pressure. The residue was puri-
fied by silica gel chromatography (petroleum ether/ethyl
acetate=10/1) to afford 3a as a yellow solid; yield: 87.6 mg
[4] a) H. Li, Y. Li, X.-S. Zhang, K. Chen, X. Wang, Z.-J.
Shi, J. Am. Chem. Soc. 2011, 133, 15244; b) T. W.
Lyons, K. L. Hull, M. S. Sanford, J. Am. Chem. Soc.
2011, 133, 4455; c) K. Cheng, B. Yao, J. Zhao, Y.
Zhang, Org. Lett. 2008, 10, 5309; d) W. Ma, L. Acker-
mann, Chem. Eur. J. 2013, 19, 13925.
[5] a) Y. Wang, C. Li, Y. Li, F. Yin, X.-S. Wang, Adv.
Synth. Catal. 2013, 355, 1724; b) B. Li, J. Ma, N. Wang,
H. Feng, S. Xu, B. Wang, Org. Lett. 2012, 14, 736; c) S.
Rakshit, C. Grohmann, T. Besset, F. Glorius, J. Am.
Chem. Soc. 2011, 133, 2350; d) F. Wang, G. Song, X. Li,
Org. Lett. 2010, 12, 5430; e) T. Besset, N. Kuhl, F. W.
Patureau, F. Glorius, Chem. Eur. J. 2011, 17, 7167.
1
(95%); mp 122.7–122.88C. H NMR (400 MHz, CDCl3): d=
7.65 (d, J=7.2 Hz, 1H), 7.41–7.35 (m, 2H), 7.22–7.02 (m,
6H), 6.99 (d, J=8.0 Hz, 1H), 6.16 (d, J=16.0 Hz, 1H), 5.80
(s, 1H), 4.06–4.01 (m, 2H), 1.22 (t, J=7.6 Hz, 3H);
13C NMR (100 MHz, CDCl3): d=167.1, 152.7, 139.7, 135.4,
133.0, 130.7, 129.7, 127.9, 124.5, 123.1, 121.5, 121.4, 121.2,
118.0, 117.2, 110.8, 106.4, 60.6, 14.1; IR (neat): n=3353,
614
ꢁ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2014, 356, 609 – 615