Jan-Feb 2008
Synthesis of Quinoxalines at Room Temperature
287
(95:5, v/v), the fractions of product was combined and solvents
were evaporated in vacuo to afford the product 3aa. All the
products gave mp in good accordance with the reported data
moiety with the amine proton NH on 1 and the
coordination of the positively charged H atom on the
amido- moiety with ketone O on 2. Thus the reaction in
the first step was facilitated in two ways; one was the
double activation of the nucleophile 1 and the
electrophile 2, another was the proximity of 1 and 2.
The latter part of the schematic approach from freed 6
to 3 was proposed and confirmed [28].
1
[15–17]. Each H NMR spectrum of 3 agreed with the assigned
structure. Representative compounds were given below.
2,3-Diphenylquinoxaline (3aa). White crystal (EtOH), 1.3 g
(92 %), mp 124–125 (lit. [15] 123–125) °C; 1H nmr (CDCl3): ꢁ
7.35 (m, 6H), 7.56 (m, 4H), 7.76 (m, 2H), 8.20 (m, 2H); HRMS
(ESI): m/z [M + Na]+ calcd. for C20H14N2Na+ 305.1055, found
305.1058.
Scheme II
2,3-Di(furan-2-yl)-6-methylquinoxaline (3bd). Light brown
crystal (EtOH), 1.2 g (87 %), 119–120 (lit. [16] 118–119) °C; 1H
nmr (CDCl3): ꢁ 2.56 (s, 3H), 6.47 (m, 2H), 6.62 (d, 2H, J = 3.6
Hz), 7.56 (dd, 1H, J = 8.6, 1.3 Hz), 7.93 (s, 1H), 8.06 (d, 1H, J =
proton shift
zwitterionic form
8.6 Hz,); HRMS (ESI): m/z [M + H]+ calcd. for C17H13N2O2
+
amidosulfonic form
O
H
O
277.0977, found 277.0972.
6-Chloro-2,3-dimethylquinoxaline (3ce). Light orange
crystal (EtOH), 0.86 g (89%), 85–86 (lit. [18] 83–84) °C; H
nmr (CDCl3): ꢁ 2.77 (s, 6H), 7.64 (dd, 1H, J = 9.0, 2.2 Hz), 8.01
(d, 1H, J = 9.0 Hz), 8.09 (d, 1H, J = 2.2 Hz); HRMS (ESI): m/z
[M + H]+ calcd. for C10H10ClN2+ 193.0533, found 193.0529.
O
H
O
4
S
N
5
H
S
N
1
O
H
H
O
H
H
O
H
N
O
R
N
R
H
H
O
R
Acknowledgement. We are grateful to the Hi-tech R & D
Program of China (No. 2007CB714305) for financial support.
R
R
O
NH2
NH2
2
1
6
REFERENCES AND NOTES
R
N
N
R
[1] Nasr, M. N. A. Arch. Pharm., 2002, 335, 389.
[2] Thomas, K. R. J.; Lin, J. T.; Tao, Y. T.; Chuen, C. H. J.
Mater. Chem., 2002, 12, 3516.
O
R
NH2
N
H
N
R
R
OH
H OH
N
[3] Hirayama, T.; Yamasaki, S.; Ameku, H.; Ishi-i, T.;
Thiemann, T.; Mataka, S. Dyes Pigment, 2005, 67, 105.
[4] Aldakov, D.; Anzenbacher, P. Chem. Commun., 2003, 1394 .
[5] Torre, M. H.; Gambino, D.; Araujo, J.; Cerecetto, H.;
Gonzalez, B.; Lavaggi, M. L.; Azqueta, A.; de Cerain, A. L.; Vega, A.
M.; Abram, U.; Costa, A. J. Eur. J. Med. Chem., 2005, 40, 473.
[6] Szekelyhidi, Z.; Pato, J.; Waczek, F.; Banhegyi, P.;
Hegymegi-Barakonyi, B.; Eros, D.; Meszaros, G.; Hollosy, F.;
Hafenbradl, D.; Obert, S.; Klebl, B.; Keri, G.; Orfi, L. Bioorg. Med.
Chem. Lett., 2005, 15, 3241.
H OH
N
N
R
R
R
R
3
N
N
H OH
In summary, we have developed an efficient approach
to quinoxalines by direct condensations of o-phenyl-
enediamines with ꢀ-diketones catalyzed by NH2SO3H in
dichloromethane at room temperature. The protocols
featured with mild reaction conditions, easy work-up, and
excellent yields.
[7] Cheon, H. G.; Lee, C. M.; Kim, B. T.; Hwang, K. J. Bioorg.
Med. Chem. Lett., 2004, 14, 2661.
[8] Refaat, H. M.; Moneer, A. A.; Khalil, O. M. Arch. Pharm.
Res., 2004, 27, 1093.
[9] Bonde, C.; Noraberg, J.; Noer, H.; Zimmer, J. Neurosci.,
2005, 136, 779.
EXPERIMENTAL
[10] Hui, X.; Desrivot, J.; Bories, C.; Loiseau, P. M.; Franck, X.;
Hocquemiller, R.; Figadere, B. Bioorg. Med. Chem. Lett., 2006, 16, 815.
[11] Brown, D. J. Quinoxalines: Supplement II, in The Chemistry
of Heterocyclic Compounds, Taylor, E. C.; Wipf, P. eds., John Wiley &
Sons, New Jersey, 2004.
All reactants and solvents are commercially available and
were used as received without purification. Melting points were
determined using a microscope hot stage type apparatus without
correction. 1H NMR spectra were recorded at 500 MHz in
CDCl3 on a Bruker DRX-500 instrument. Chemical shifts were
expressed in ppm using TMS as internal standard for H NMR.
High-resolution electrospray mass spectra were obtained on a
Mariner ESI-TOF spectrometer.
General Procedure for the Preparation of Quinoxalines 3.
A mixture of o-phenylenediamine 1a (0.54 g, 5.0 mmol), 1,2-
diketone 2a (1.41 g, 5.0 mmol), and sulfamic acid (24 mg, 5 mol
%) in CH2Cl2 (25 mL) was stirred for appropriate time (Table 2)
at ambient temperature. After completion of the reaction, the
solid catalyst NH2SO3H was filtered off, the solution was
subject to silica column directly and eluted with CH2Cl2–MeOH
[12] Bost, R. W.; Towell, E. E. J. Am. Chem. Soc., 1948, 70, 903.
[13] Cheeseman, G. W. H. in Advances in Heterocyclic
Chemistry, Vol. 1, Katritzky, A. R. ed., Academic Press, London,
1963.
1
[14] Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A.
R. VOGEL’s Textbook of Practical Organic Chemistry, 5th ed., Pearson
Education Ltd., Edinburgh, 1989, pp. 1189–1190.
[15] Wang, L. M.; Liu, J. J.; Tian, H.; Qian, C. T. Synth.
Commun., 2004, 34, 1349.
[16] Bhosale, R. S.; Sarda, S. R.; Ardhapure, S. S.; Jadhav, W. N.;
Bhusare, S. R.; Pawar, R. P. Tetrahedron Lett., 2005, 46, 7183.
[17] More, S. V.; Sastry, M. N. V.; Yao, C. F. Green Chem.,