Paper
PCCP
Notes and references
1 (a) F. Cataldo, Polyynes: Synthesis Properties and Applications,
CRC Press Taylor & Francis Group, Boca Raton, 2006;
(b) R. J. Lagow, J. J. Kampa, H.-C. Wei, S. L. Battle, J. W.
Genge, D. A. Laude, C. J. Harper, R. Bau, R. C. Stevens,
J. F. Haw and E. Munson, Science, 1995, 267, 362–367.
2 (a) S. Szafert and J. A. Gladysz, Chem. Rev., 2003, 103,
4175–4205; (b) S. Szafert and J. A. Gladysz, Chem. Rev.,
2006, 106, PR1–PR33.
Fig. 9 Examples of the open aperture f-scan curves revealing the 3PA
phenomenon.
3 F. Cataldo, Polym. Int., 1997, 44, 191–200.
4 F. Diederich, P. J. Stang and R. R. Tykwinski, Acetylene
Chemistry; Chemistry, Biology and Materials Science, Wiley-
VCH, Weinheim, 2005.
5 (a) K. West, C. Wang, A. S. Batsanov and M. R. Bryce, Org.
Biomol. Chem., 2008, 6, 1934–1937; (b) A. Ricci, M. Chiarini,
C. Lo Sterzo, R. Pizzoferrato and S. Paoloni, J. Photochem.
Photobiol., A, 2014, 298, 1–8.
6 J. Cornil, D. Beljonne, J.-P. Calbert and J.-L. Bredas, Adv.
Mater., 2001, 13, 1053–1067.
7 A. Sun, J. W. Lauher and N. S. Goroff, Science, 2006, 312,
1030–1034.
8 G. Eres, C. M. Rouleau, M. Yoon, A. A. Puretzky, J. J.
Jackson and D. B. Geohegan, J. Phys. Chem. C, 2009, 113,
15484–15491.
9 C. Glaser, Ber. Dtsch. Chem. Ges., 1869, 2, 422–424.
10 S. M. E. Simpkins, M. D. Weller and L. R. Cox, Chem. Commun.,
2007, 4035–4037.
11 M. Gulcur, P. Moreno-Garcia, X. Zhao, M. Baghernejad,
A. S. Batsanov, W. Hong, M. R. Bryce and T. Wandlowski,
Chem. – Eur. J., 2014, 20, 4653–4660.
12 T. Gibtner, F. Hampel, J.-P. Gisselbrecht and A. Hirsch,
Chem. – Eur. J., 2002, 8, 408–432.
Conclusions
The investigated compounds exhibit very strong negative third-
order nonlinear refraction in the 540–580 nm spectral range,
with peak values of Re(g) in the order of ꢀ5 and ꢀ4 ꢁ 10ꢀ33 esu
in compounds E1–C8–E1 and E2–C8–E2, respectively, and ꢀ1.4 ꢁ
10ꢀ32 esu in compound E3–C8–E3. In all compounds the non-
linear refraction is accompanied by two-photon absorption
with the maximum cross-section s(2) varying from B100 GM
in E2–C8–E2 up to B200 GM in E1–C8–E1 and E3–C8–E3,
corresponding to Im(g) between 2.5 and 4.5 ꢁ 10ꢀ34 esu. These
results are comparable with the data for the compound PtC8Pt
in ref. 24 where peak values of Re(g) = ꢀ3.2 ꢁ 10ꢀ33 and Im(g) =
7 ꢁ 10ꢀ34 esu were found in the vicinity of 580 nm, not very
different from the values in the present report. The high values
of the |Re(g)/Im(g)| merit factor obtained for the studied
compounds confirm the potential suitability of the polyyne
structural motif for optical switching. At longer wavelengths
the samples exhibit complex nonlinear absorption behaviour,
involving various multiphoton phenomena, with three-photon
absorption being a dominant process in the range of 640–
825 nm, showing the maximum cross-section s(3) at 640 nm
in the order of 5 ꢁ 10ꢀ79 cm6 s2 in E2–C8–E2, and up to 1 ꢁ
10ꢀ78 cm6 s2 in E1–C8–E1 and E3–C8–E3.
The present results suggest that polyynes remain a very
interesting group of organic compounds from the point of
view of their NLO properties, especially that, apparently, even
small molecules of such type – of molecular mass not exceeding
500 g molꢀ1 – can exhibit quite large values of the NLO
parameters. Further investigation of these compounds, including
spectrally resolved NLO measurements and theoretical analysis of
the electronic transitions involved in the NLO mechanisms, such
as those presented in ref. 36, may allow for the rational design of
polyyne molecules suitable for photonic applications in the useful
spectral regions.
13 W. A. Chalifoux and R. R. Tykwinski, Nat. Chem., 2010, 2,
967–971.
14 (a) W. Mohr, J. Stahl, F. Hampel and J. A. Gladysz, Chem. –
Eur. J., 2003, 9, 3324–3340; (b) N. J. Long and C. K. Williams,
Angew. Chem., Int. Ed., 2003, 42, 2586–2617; (c) T. Bartik,
B. Bartik, M. Brady, R. Dembinski and J. A. Gladysz, Angew.
Chem., Int. Ed. Engl., 1996, 35, 414–417; (d) R. Dembinski,
T. Bartik, B. Bartik, M. Jaeger and J. A. Gladysz, J. Am. Chem.
Soc., 2000, 122, 810–822.
15 Z. Cao, B. Xi, D. S. Jodoin, L. Zhang, S. P. Cummings, Y. Gao,
S. F. Tyler, P. E. Fanwick, R. J. Crutchley and T. Ren, J. Am.
Chem. Soc., 2014, 136, 12174–12183.
16 S. Eisler, A. D. Slepkov, E. Elliott, T. Luu, R. McDonald,
F. A. Hegmann and R. R. Tykwinski, J. Am. Chem. Soc., 2005,
127, 2666–2676.
17 A. D. Slepkov, F. A. Hegmann, S. Eisler, E. Elliott and R. R.
Tykwinski, J. Chem. Phys., 2004, 120, 6807–6810.
18 J.-W. Song, M. A. Watson, H. Sekino and K. Hirao, J. Chem.
Phys., 2008, 129, 024117.
19 B. B. Frank, P. R. Laporta, B. Breiten, M. C. Kuzyk, P. D.
Jarowski, W. B. Schweizer, P. Seiler, I. Biaggio, C. Boudon,
J.-P. Gisselbrecht and F. Diederich, Eur. J. Org. Chem., 2011,
4307–4317.
Acknowledgements
RK and MS would like to acknowledge the financial support
from the Foundation for Polish Science (WELCOME grant
‘Organometallics in NanoPhotonics’) and the National Science
Centre Poland (NCN grant UMO-2013/10/A/ST4/00114). SS
would like to thank the National Science Centre (Grant number
UMO-2013/08/M/ST5/00942) for financial support.
This journal is ©the Owner Societies 2015
Phys. Chem. Chem. Phys., 2015, 17, 13680--13688 | 13687