Organic Letters
Letter
(6) (a) Barker, T. J.; Jarvo, E. R. Synthesis 2011, 3954. (b) Barker, T.
J.; Jarvo, E. R. J. Am. Chem. Soc. 2009, 131, 15598. (c) Barker, T. J.;
Jarvo, E. R. Angew. Chem., Int. Ed. 2011, 50, 8325.
(7) (a) Berman, A. M.; Johnson, J. S. J. Am. Chem. Soc. 2004, 126,
5680. (b) Berman, A. M.; Johnson, J. S. J. Org. Chem. 2005, 70, 364.
(c) Berman, A. M.; Johnson, J. S. J. Org. Chem. 2006, 71, 219.
(d) Campbell, M. J.; Johnson, J. S. Org. Lett. 2007, 9, 1521.
(e) Berman, A. M.; Johnson, J. S. Synlett 2005, 1799.
(8) (a) Liu, S.; Liebeskind, L. S. J. Am. Chem. Soc. 2008, 130, 6918.
(b) Zhang, Z.; Yu, Y.; Liebeskind, L. S. Org. Lett. 2008, 10, 3005.
(c) Yu, Y.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2004, 6, 2631. (d) Liu,
S.; Yu, Y.; Liebeskind, L. S. Org. Lett. 2007, 9, 1947.
(9) (a) He, C.; Chen, C.; Cheng, J.; Liu, C.; Liu, W.; Li, Q.; Lei, A.
Angew. Chem., Int. Ed. 2008, 47, 6414. (b) Tan, Y.; Hartwig, J. F. J. Am.
Chem. Soc. 2010, 132, 3676.
may happen first followed by ensuing transmetalation with
boronic acid. Once the intermediate II is formed, 1,2-migration
of the vinyl group from rhodium to nitrogen, which is
accompanied by the release of the pivaloyloxyl group, results in
the C−N bond formation and affords the intermediate III.17
Finally, intermediate III undergoes further protonation to
release the desired enamide product and regenerate the active
Rh(III) catalyst.
In conclusion, we have presented a novel and highly effective
method for enamide synthesis using Rh(III)-catalyzed
umpolung amidation between N-pivaloyloxyl amides and
alkenylboronic acids. By taking advantage of hydroboration
reaction, this protocol enables the formal anti-Markovnikov
hydroamidation of terminal alkynes. The operational simplicity,
mild reaction conditions, and broad functional group tolerance
of this reaction makes it an appealing and complementary
strategy to the traditional copper catalysis.
(10) (a) Tan, N.-H.; Zhu, J. Chem. Rev. 2006, 106, 840. (b) Joullie,
M. M.; Richard, D. J. Chem. Commun. 2004, 2011. (c) He, G.; Wang,
J.; Ma, D. Org. Lett. 2007, 9, 1367. (d) Wang, X.; Porco, J. A., Jr. J. Am.
Chem. Soc. 2003, 125, 6040. (e) Su, Q.; Panek, J. S. J. Am. Chem. Soc.
2004, 126, 2425. (f) Furstner, A.; Dierkes, T.; Thiel, O. R.; Blanda, G.
Chem.Eur. J. 2001, 7, 5286. (g) Nicolaou, K. C.; Kim, D. W.; Baati,
R. Angew. Chem., Int. Ed. 2002, 41, 3701. (h) Shen, R.; Lin, C. T.;
Bowman, E. J.; Bowman, B. J.; Porco, J. A., Jr. J. Am. Chem. Soc. 2003,
125, 7889. (i) Tanoury, G. J.; Chen, M.; Dong, Y.; Forslund, R. E.;
Magdziak, D. Org. Lett. 2008, 10, 185. (j) Smith, A. B., III; Duffey, M.
O.; Basu, K.; Walsh, S. P.; Suennemann, H. W.; Frohn, M. J. Am.
Chem. Soc. 2008, 130, 422. (k) Nicolaou, K. C.; Sun, Y.-P.; Guduru, R.;
Banerji, B.; Chen, D. Y.-K. J. Am. Chem. Soc. 2008, 130, 3633.
(l) Nicolaou, K. C.; Guduru, R.; Sun, Y.-P.; Banerji, B.; Chen, D. Y.-K.
Angew. Chem., Int. Ed. 2007, 46, 5896. (m) Yang, L.; Deng, G.; Wang,
D.-X.; Huang, Z.-T.; Zhu, J.-P.; Wang, M.-X. Org. Lett. 2007, 9, 1387.
(n) Huang, X.; Shao, N.; Huryk, R.; Palani, A.; Aslanian, R.; Seidel-
Dugan, C. Org. Lett. 2009, 11, 867. (o) Nicolaou, K. C.; Leung, G. Y.
C.; Dethe, D. H.; Guduru, R.; Sun, Y.-P.; Lim, C. S.; Chen, D. Y.-K. J.
Am. Chem. Soc. 2008, 130, 10019. (p) Palimkar, S. S.; Uenishi, J. Org.
Lett. 2010, 12, 4160. (q) Palimkar, S. S.; Uenishi, J.; Ii, H. J. Org. Chem.
2012, 77, 388. (r) Florence, G. J.; Wlochal, J. Chem.Eur. J. 2012, 18,
14250.
(11) (a) Snider, B. B.; Song, F. B. Org. Lett. 2000, 2, 407.
(b) Furstner, A.; Brehm, C.; Cancho-Grande, Y. Org. Lett. 2001, 3,
3955. (c) Bolshan, Y.; Batey, R. A. Angew. Chem., Int. Ed. 2008, 47,
2109. (d) Sergeyev, S.; Hesse, M. Synlett 2002, 1313. (e) Lam, P. Y. S.;
Vincent, G.; Bonne, D.; Clark, C. G. Tetrahedron Lett. 2003, 44, 4927.
(12) (a) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett.
2003, 5, 3667. (b) Cesati, R. R., III; Dwyer, G.; Jones, R. C.; Hayes, M.
P.; Yalamanchili, P.; Casebier, D. S. Org. Lett. 2007, 9, 5617. (c) Shen,
R.; Porco, J. A., Jr. Org. Lett. 2000, 2, 1333. (d) Pan, X.; Cai, Q.; Ma,
D. Org. Lett. 2004, 6, 1809. (e) Shen, R.; Lin, C. T.; Bowman, E. J.;
Bowman, B. J.; Porco, J. A., Jr. J. Am. Chem. Soc. 2003, 125, 7889.
(13) (a) Feng, C.; Loh, T.-P. Chem. Sci. 2012, 3, 3458. (b) Zhou, H.;
Chung, W. J.; Xu, Y. H.; Loh, T.-P. Chem. Commun. 2009, 3472.
(c) Zhou, H.; Xu, Y. H.; Chung, W. J.; Loh, T. P. Angew. Chem., Int.
Ed. 2009, 48, 5355. (d) Pankajakshan, S.; Xu, Y. H.; Cheng, J. K.; Low,
M. T.; Loh, T. P. Angew. Chem., Int. Ed. 2012, 51, 5701.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures, characterization data, and 1H and 13
■
S
C
NMR spectra for all compounds. This material is available free
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We gratefully acknowledge the USTC Research Fund, the
Nanyang Technological University, and the Singapore Ministry
of Education Academic Research Fund (ETRP 1002 111,
MOE2010-T2-2-067, MOE 2011-T2-1-013) for the funding of
this research.
REFERENCES
■
(1) (a) Erdik, E.; Ay, M. Chem. Rev. 1989, 89, 1947. (b) Mlynarski, S.
N.; Karns, A. S.; Morken, J. P. J. Am. Chem. Soc. 2012, 134, 16449.
(c) Zhu, C.; Li, G.; Ess, D. H.; Falck, J. R.; Kurti, L. J. Am. Chem. Soc.
2012, 134, 18253. (d) Narasaka, K.; Kitamura, M. Eur. J. Org. Chem.
2005, 4505. (e) Kitamura, M.; Suga, T.; Chiba, S.; Narasaka, K. Org.
Lett. 2004, 4, 4619. (f) Dumas, A. M.; Molander, G. A.; Bode, J. W.
Angew. Chem., Int. Ed. 2012, 51, 5683.
(2) (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc.
Chem. Res. 1998, 31, 805. (b) Hartwig, J. F. Angew. Chem., Int. Ed.
1998, 37, 2046.
(3) (a) Tsutsui, H.; Hayashi, Y.; Narasaka, K. Chem. Lett. 1997, 317.
(b) Tsutsui, H.; Ichikawa, T.; Narasaka, K. Bull. Chem. Soc. Jpn. 1999,
72, 1869.
(4) (a) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem.,
Int. Ed. 2012, 51, 3642. (b) Matsuda, N.; Hirano, K.; Satoh, T.; Miura,
M. Angew. Chem., Int. Ed. 2012, 51, 11827. (c) Kawano, T.; Hirano, K.;
Satoh, T.; Miura, M. J. Am. Chem. Soc. 2010, 132, 6900. (d) Matsuda,
N.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2012, 77, 617.
(e) Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13, 2395.
(f) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13,
2860. (g) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2013,
15, 172.
(14) (a) Feng, C.; Loh, T.-P. Chem. Commun. 2011, 47, 10458.
(b) Feng, C.; Feng, D.; Loh, T.-P. Org. Lett. 2013, 15, 3670. (c) Feng,
C.; Loh, T.-P. Angew. Chem., Int. Ed. 2014, 53, 2722.
(15) (a) Yudha, S.; Kuninobu, Y.; Takai, K. Org. Lett. 2007, 9, 5609.
(b) Gooßen, L. J.; Rauhaus, J. E.; Deng, G. Angew. Chem., Int. Ed.
2005, 44, 4042. (c) Kondo, T.; Tanaka, A.; Kotachi, S.; Watanabe, Y. J.
Chem. Soc. Chem. Commun. 1995, 413.
(16) (a) Zhao, P.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc.
2007, 129, 1876. (b) Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. J.
Org. Chem. 2011, 76, 2867.
(17) (a) Neely, J. M.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 66.
(b) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2011,
133, 6449.
(5) (a) Rucker, R. P.; Whittaker, A. M.; Dang, H.; Lalic, G. J. Am.
Chem. Soc. 2012, 134, 6571. (b) Rucker, R. P.; Whittaker, A. M.; Dang,
H.; Lalic, G. Angew. Chem., Int. Ed. 2012, 51, 3953.
D
dx.doi.org/10.1021/ol501309e | Org. Lett. XXXX, XXX, XXX−XXX