Journal of the American Chemical Society
Article
an industrial application of carbonyl hydroacylation (Tishchenko
reaction), see: Ulrich, D.; Jankowski, H. Chem. Tech. 1988, 40, 393.
(3) For Ru catalysis, see: (a) Horino, H.; Ito, T.; Yamamoto, A.
Chem. Lett. 1978, 17. (b) Ozawa, F.; Yamagami, I.; Yamamoto, A. J.
Organomet. Chem. 1994, 473, 265.
(4) For an early example of intramolecular ketone hydroacylation
catalyzed by an achiral rhodium complex, see: Bergens, S. H.; Fairlie,
D. P.; Bosnich, B. Organometallics 1990, 9, 566.
(5) For Rh catalysis, see: (a) Slough, G. A.; Ashbaugh, J. R.; Zannoni,
L. A. Organometallics 1994, 13, 3587. (b) Fuji, K.; Morimoto, T.;
Tsutsumi, K.; Kakiuchi, K. Chem. Commun. 2005, 3295. (c) Pawley, R.
J.; Moxham, G. L.; Dallanegra, R.; Chaplin, A. B.; Brayshaw, S. K.;
Weller, A. S.; Willis, M. C. Organometallics 2010, 29, 1717.
(6) For Ni catalysis, see: (a) Ogoshi, S.; Hoshimoto, Y.; Ohashi, M.
Chem. Commun. 2010, 46, 3354. (b) Hoshimo, Y.; Ohashi, M.; Ogoshi,
S. J. Am. Chem. Soc. 2011, 133, 4668.
(7) (a) Shen, Z.; Khan, H. A.; Dong, V. M. J. Am. Chem. Soc. 2008,
130, 2916. (b) Shen, Z.; Dornan, P. K.; Khan, H. A.; Woo, T. K.;
Dong, V. M. J. Am. Chem. Soc. 2009, 131, 1077. (c) Khan, H. A.; Kou,
K. G. M.; Dong, V. M. Chem. Sci. 2011, 2, 407.
(8) (a) Sakai, K.; Ide, J.; Oda, O.; Nakamura, N. Tetrahedron Lett.
1972, 13, 1287. (b) Milstein, D. J. Chem. Soc., Chem. Commun. 1982,
1357. (c) Milstein, D. Organometallics 1982, 1, 1549. (d) See ref 4.
(9) For examples of non-chelation-assisted CH activation in olefin
hydroacylation, see: (a) Lenges, C. P.; Brookhart, M. J. Am. Chem. Soc.
1997, 119, 3165. (b) Lenges, C. P.; White, P. S.; Brookhart, M. J. Am.
Chem. Soc. 1998, 120, 6965. (c) Roy, A. H.; Lenges, C. P.; Brookhart,
M. J. Am. Chem. Soc. 2007, 129, 2082. (d) Tanaka, K.; Shibata, Y.;
Suda, T.; Hagiwara, Y.; Hirano, M. Org. Lett. 2007, 9, 1215.
(e) Shibata, Y.; Tanaka, K. J. Am. Chem. Soc. 2009, 131, 12552.
(10) For examples of non-chelation-assisted hydroacylation beyond
mechanisms involving CH activation, see: (a) Leung, J. C.; Krische,
M. J. Chem. Sci. 2012, 3, 2202. (b) Hong, Y.-T.; Barchuk, A.; Krische,
M. J. Angew. Chem., Int. Ed. 2006, 45, 6885. (c) Shibahara, F.; Bower, J.
F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14120. (d) Omura, S.;
Fukuyama, T.; Horiguchi, J.; Murakami, Y.; Ryu, I. J. Am. Chem. Soc.
2008, 130, 14094. (e) Williams, V. M.; Leung, J. C.; Patman, R. L.;
Krische, M. J. Tetrahedron 2009, 65, 5024. (f) Murphy, S. K.; Dong, V.
M. J. Am. Chem. Soc. 2013, 135, 5553. (g) Chen, Q.-A.; Kim, D. K.;
Dong, V. M. J. Am. Chem. Soc. 2014, 136, 3772.
(19) (a) Passerini, M. Gazz. Chim. Ital. 1921, 51, 126. (b) Passerini,
M. Gazz. Chim. Ital. 1921, 51, 181. (c) Passerini, M.; Ragni, G. Gazz.
Chim. Ital. 1931, 61, 964.
(20) For enantioselective Passerini-type reactions, see: (a) Denmark,
S. E.; Fan, Y. J. Am. Chem. Soc. 2003, 125, 7825. (b) Denmark, S. E.;
Fan, Y. J. Org. Chem. 2005, 70, 9667.
(21) (a) Wang, S.-X.; Wang, M.-X.; Wang, D.-X.; Zhu, J. Angew.
Chem., Int. Ed. 2008, 47, 388. (b) Yue, T.; Wang, M.-X.; Wang, D.-X.;
Zhu, J. Angew. Chem., Int. Ed. 2008, 47, 9454. (c) Yue, T.; Wang, M.-
X.; Wang, D.-X.; Masson, G.; Zhu, J. J. Org. Chem. 2009, 74, 8396.
(22) For Rh-catalyzed hydrogenation of α-ketoamides, see
(a) Carpentier, J.-F.; Mortreux, A. Tetrahedron: Asymmetry 1997, 8,
́
1083. (b) Pasquier, C.; Pelinski, L.; Brocard, J.; Mortreux, A.;
Agbossou-Niedercorn, F. Tetrahedron Lett. 2001, 42, 2809.
(23) For a Ru-catalyzed reduction of α-ketoamides, see: Broger, E.
A.; Burkart, W.; Hennig, M.; Scalone, M.; Schmid, R. Tetrahedron:
Asymmetry 1998, 9, 4043.
(24) For reductions of α-ketoamides via biocatalysis, see: (a) Hata,
H.; Shimizu, S.; Hattori, S.; Yamada, H. J. Org. Chem. 1990, 55, 4377.
(b) Ishihara, K.; Yamamoto, H.; Mitsuhashi, K.; Nishikawa, K.; Tsuboi,
S.; Tsuji, H.; Nakajima, N. Biosci. Biotechnol. Biochem. 2004, 68, 2306.
(c) Ishihara, K.; Nishimura, M.; Nakashima, K.; Machii, N.; Miyake, F.;
Nishi, M.; Yoshida, M.; Masuoka, N.; Nakajima, N. Biochem. Insights
2010, 3, 19. (d) Ishihara, K.; Nagai, H.; Takahashi, K.; Nishiyama, M.;
Nakajima, N. Biochem. Insights 2011, 4, 29. (e) Nakayama, G. R.;
Schultz, P. G. J. Am. Chem. Soc. 1992, 114, 780. (f) Patel, R. N.; Chu,
L.; Chidambaram, R.; Zhu, J.; Kant, J. Tetrahedron: Asymmetry 2002,
13, 349. (g) Stella, S.; Chadha, A. Catal. Today 2012, 198, 345.
(25) Wang, K.; Emge, T. J.; Goldman, A. S.; Li, C.; Nolan, S. P.
Organometallics 1995, 14, 4929.
(26) The absolute configuration of 3c was assigned by X-ray
crystallography. The absolute configurations of related products are
assigned by analogy. See Supporting Information for details.
(27) Preliminary DFT studies using N-methylisatin as a model for
the α-ketoamide to simplify calculations show that having the acyl
ligand on the “bottom” apical position is 5.1 kcal/mol lower in energy
than having the acyl ligand on the “top” apical position (see
Supporting Information).
(28) (a) Kurosu, M.; Kishi, Y. Tetrahedron Lett. 1998, 39, 4793.
(b) Badioli, M.; Ballini, R.; Bartolacci, M.; Bosica, G.; Torregiani, E.;
Marcantoni, E. J. Org. Chem. 2002, 67, 8938. (c) Kochi, T.; Ellman, J.
A. J. Am. Chem. Soc. 2004, 126, 15652.
(11) For NHC catalysis, see: (a) Chan, A.; Scheidt, K. A. J. Am.
Chem. Soc. 2006, 128, 4558. (b) Sreenivasulu, M.; Kumar, K. A.;
Reddy, K. S.; Kumar, K. S.; Kumar, P. R.; Kumar, K. B.;
Chandrasekhar, K. B.; Pal, M. Tetrahedron Lett. 2011, 52, 727.
(c) Du, D.; Lu, Y.; Jin, J.; Tang, W.; Lu, T. Tetrahedron 2011, 67, 7557.
(12) Cross-Tishchenko reactions have been demonstrated with
thiolate catalysis: (a) Cronin, L.; Manoni, F.; O’Connor, C. J.;
Connon, S. J. Angew. Chem., Int. Ed. 2010, 49, 3045. (b) O’Connor, C.
J.; Manoni, F.; Curran, S. P.; Connon, S. J. New J. Chem. 2011, 35, 551.
(13) For a selenide-catalyzed cross-Tishchenko reaction, see: Curran,
S. P.; Connon, S. J. Org. Lett. 2012, 14, 1074.
(29) (a) Kagan, H. B. Adv. Synth. Catal. 2001, 343, 227. (b) Girard,
C.; Kagan, H. B. Angew. Chem., Int. Ed. 1998, 37, 2922. (c) Blackmond,
D. G. Acc. Chem. Res. 2000, 33, 402.
(30) Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51,
3066.
́
(31) Gomez-Gallego, M.; Sierra, M. A. Chem. Rev. 2011, 111, 4857.
(32) Chung, L. W.; Wiest, O.; Wu, Y. J. Org. Chem. 2008, 73, 2649.
(33) Wang, F.; Meng, Q.; Li, M. Mol. Simul. 2008, 34, 515.
(34) (a) Martinez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E.
N. J. Am. Chem. Soc. 1995, 117, 5897. (b) Hansen, K. B.; Leighton, J.
L.; Jacobsen, E. N. J. Am. Chem. Soc. 1996, 118, 10924. (c) Sammis, G.
M.; Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 9928.
(35) For an example of rhodium behaving as a dual-role catalyst, see:
Dornan, P. K.; Kou, K. G. M.; Houk, K. N.; Dong, V. M. J. Am. Chem.
Soc. 2014, 136, 291.
(14) Coulter, M. M.; Kou, K. G. M.; Galligan, B.; Dong, V. M. J. Am.
Chem. Soc. 2010, 132, 16330.
(15) Phan, D. H. T.; Kim, B.; Dong, V. M. J. Am. Chem. Soc. 2009,
131, 15608.
(16) The trans-effect of unsymmetrical bidentate ligands in Pd-
catalyzed allylic substitutions has been reported: Tu, T.; Zhou, Y.-G.;
Hou, X.-L.; Dai, L.-X.; Dong, X.-C.; Yu, Y.-H.; Sun, J. Organometallics
2003, 22, 1255.
(17) Hasanayn, F.; Achord, P.; Braunstein, P.; Magnier, H. J.;
Krough-Jesperson, K.; Goldman, A. S. Organometallics 2012, 31, 4680.
(18) Measures were taken to ensure that the reported ee is
representative of the reaction and not an artifact of self-dispropor-
tionation of enantiomers (see Supporting Information). For an
example of self-disproportionation of enantiomers during achiral
phase silica gel chromatography, see: Soloshonok, V. A. Angew. Chem.,
Int. Ed. 2006, 45, 766.
(36) Dias, E. L.; Brookhart, M.; White, P. S. Chem. Commun. 2001,
423.
(37) Inui, Y.; Tanaka, M.; Imai, M.; Tanaka, K.; Suemune, H. Chem.
Pharm. Bull. 2009, 57, 1158.
(38) Rhodium-catalyzed hydroacylation has been described as a
“black box” due to difficulties in detecting reaction intermediates:
(a) Fairlie, D. P.; Bosnich, B. Organometallics 1988, 7, 946. (b) See ref
4.
F
dx.doi.org/10.1021/ja504296x | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX