10.1002/anie.201707914
Angewandte Chemie International Edition
COMMUNICATION
Grubbs, K. N. Houk, B. M. Stoltz, J. Am. Chem. Soc. 2017, 139,
6867−6879. (f) S. Banerjee, Y.-F. Yang, I. D. Jenkins, Y. Liang, A. A.
Toutov, W.-B. Liu, D. P. Schuman, R. H. Grubbs B. M. Stoltz, E. H. Krenske,
K. N. Houk, R. N. Zare, J. Am. Chem. Soc. 2017, 139, 6880−6887.
(a) J. P. Barham, G. Coulthard, R. G. Kane, N. Delgado, M. P. John, J. A.
Murphy Angew. Chem. Int. Ed. 2016, 55, 4492−4496. (b) J. P. Barham, G.
Coulthard, K. Emery, E. Doni, F. Cumine, G. Nocera, M. P. John, L. E. A.
Berlouis, T. McGuire, T. Tuttle, J. A. Murphy, J. Am. Chem. Soc. 2016, 138,
7402−7410. (c) S. Zhou, G. M. Anderson, B. Mondal, E. Doni, V.
Ironmonger, M. Kranz, T. Tuttle, J. A. Murphy, Chem. Sci. 2014, 5,
476−482. (d) S. Zhou, E. Doni, G. M. Anderson, R. G. Kane, S. W.
MacDougall, V. M. Ironmonger, T. Tuttle, J. A. Murphy, J. Am. Chem. Soc.
2014, 136, 17818−17826.
concentration of the reducing species present. Finally, alkyne 54
and stilbene 55 were reacted and gave (PhCH2)2 59 as the sole
product (21 % and 93 % respectively).12
[2]
[3]
(a) S. S. Hanson, E. Doni, K. T. Traboulsee, G. Coulthard, J. A. Murphy, C.
A. Dyker, Angew. Chem. Int. Ed. 2015, 54, 11236−11239. (b) E. Doni, B.
Mondal, S. O’Sullivan, T. Tuttle, J. A. Murphy, J. Am. Chem. Soc. 2013,
135, 10934−10937. (c) E. Cahard, F. Schoenebeck, J. Garnier, S. P. Y.
Cutulic, S. Zhou, J. A. Murphy, Angew. Chem. Int. Ed., 2012, 51,
3673−3676. (d) J. A. Murphy, F. Schoenebeck, S.-Z. Zhou, Y. Uenoyama,
Y. Miclo, T. Tuttle, J. Am. Chem. Soc., 2007, 129, 13368−13369. (e) J. A.
Murphy, S.-Z. Zhou, D. W. Thomson, F. Schoenebeck, Mohan M., S. R.
Park, T. Tuttle, L. E. A. Berlouis, Angew Chem. Int. Ed., 2007, 46,
5178−5183. (f) J. A. Murphy, T. A. Khan, S.-Z. Zhou, D. W. Thomson, M.
Mahesh, Angew. Chem. Int. Ed., 2005, 44, 1356−1360. (g) S. O‟Sullivan,
E. Doni, T. Tuttle, J. A. Murphy, Angew. Chem. Int. Ed. 2014, 53, 474−478.
(h) E. Doni, S. O‘Sullivan, J. A. Murphy, Angew. Chem.Int. Ed. 2013, 52,
2239−2242.
Scheme 5 Reductions of polycylic arenes by KOtBu-Et3SiH. [a] NMR yield.
In summary, the KOtBuEt3SiH system provides access to a broad
range of mechanisms for reductive chemistry, now including
electron transfer and hydride delivery to arenes. Electron donor 12b
is identified as a uniquely powerful agent.
[4]
J. Fujiwara, Y. Fukutani, H. Sano, K.Maruoka, H. Yamamoto, J. Am. Chem.
Soc. 1983, 105, 7177−7179.
Table 3 Energy profiles: SET from 12a
[5]
[6]
S. Talukdar, S. K. Nayak, A. Benerji, J. Org. Chem. 1998, 63, 4925−4929.
See Figure 3.10 in I. V. Alabugin,. (2016) Beyond Orbital Overlap, in
Stereoelectronic Effects: A Bridge Between Structure and Reactivity, J.
Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9781118906378.ch3
J. M. Mattalia, C. Marchi-Delapierre, H. Hazimeh, M. Chanon, Arkivoc 2006,
iv, 90118; b) F. F. Fleming, Z. Zhang, Tetrahedron 2005, 61, 747789; c)
C. J. Sinz, S. D. Rychnovsky, Top. Curr. Chem. 2001, 216, 5192. (d) J.
M. Mattalia, Beilstein J. Org. Chem. 2017, 13, 267−284.(e) T. Kawamoto,
S. J. Geib, D. P. Curran, J. Am. Chem. Soc. 2015, 137, 86178622; (f) E.
Doni, J. A. Murphy, Org. Chem. Front. 2014, 1, 10721076.
Energy Profile (kcal/mole)
Substrate
Radical Anion Product
51
52
53
60
61
62
G*: 90.0; Grel: 37.8
G*: 28.3; Grel: 25.0
G*: 25.7; Grel: 22.3
[7]
Table 4 Energy profiles: Hydride Transfer from 13a
Anionic Product
Energy Profile (kcal/mole)
Substrate
[8]
[9]
H. G. Roth, N. A. Romero, D. A. Nicewicz, Synlett 2016, 27, 714–723.
R. A. Marcus, Angew. Chem. Int. Ed. 1993, 32, 1111−1121.
51
52
53
63
64
65
G*: 16.7; Grel: 29.4
G*: 20.0; Grel: 14.8
G*: 21.7; Grel: 13.2
[10] (a) M. Tschuri, U. Boesl, S. Gilb, J. Chem. Phys. 2006, 125, 194310. (b) T.
Heinis, S. Chowdhury, P. Kebarle, Org. Mass Spect.1993, 28, 358365.
[11] Using Marcus theory, this is the inevitable result of extremely strong driving
force Grel and low reorganisation energy, see S.I.
[12] M. Szostak, M. Spain, D. J. Procter, J. Org. Chem. 2014, 79, 2522–2537.
[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.
R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H.
Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G.
Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,
J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E.
N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.
Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M.
Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken,
C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J.
Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma,
V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich,
A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J.
Fox Gaussian 09, Gaussian, Inc.: Wallingford, CT, USA, 2009.
Acknowledgements
We thank (i) Univ of Strathclyde, GSK and EPSRC for funding, and
SFC and WestCHEM for PECRE bursary funding; (ii) EPSRC
National Mass Spectrometry Service, Swansea for HRMS. Results
were obtained using ARCHIE-WeSt High Performance Computer
Keywords: SET • silyl • Marcus inverted region • DFT• hydride
[1]
(a) A. Federov, A. A. Toutov, N. A. Swisher, R. H. Grubbs, Chem. Sci. 2013,
4, 16401645.(b) A. A. Toutov, W.-B. Liu, K. N. Betz, A. Fedorov, B. M.
Stoltz, R. H. Grubbs, Nature 2015, 518, 8084. (c) A. A. Toutov, W.-B. Liu, ,
K. N. Betz, B. M. Stoltz, R. H. Grubbs, Nature Protocols 2016, 10,
1897−1903. (d) A. A. Toutov, M. Salata, A. Fedorov, Y.-F. Yang, Y. Liang,
R. Cariou, K. N. Betz, E. P. A. Couzijn, J. W. Shabaker, K. N. Houk, R. H.
Grubbs, Nature Energy 2017, 2, 10.1038/nenergy.2017.8 (e) W.-B. Liu, D.
P. Schuman, Y.-F. Yang, A. A. Toutov, Y. Liang, H. F. T. Klare, N. Nesnas,
M. Oestreich, D. G. Blackmond, S. C. Virgil, S. Banerjee, R. N., Zare, R. H.
[14] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215–241.
[15] V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern and L. A. Curtiss,
J. Comput. Chem., 2001, 22, 976–984.
[16] M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003,
24, 669–681.
This article is protected by copyright. All rights reserved.