ChemComm
Communication
Angew. Chem., Int. Ed., 2012, 51, 5048; (d) C. Hollingworth and
V. Gouverneur, Chem. Commun., 2012, 48, 2929.
3 For recent examples, see: (a) X. Shen, W. Miao, C. Ni and J. Hu,
Angew. Chem., Int. Ed., 2014, 53, 775; (b) X. Shen, Z. Min, C. Ni,
W. Zhang and J. Hu, Chem. Sci., 2014, 5, 117; (c) Q. Min, Z. Yin,
Z. Feng, W. Guo and X. Zhang, J. Am. Chem. Soc., 2014, 136, 1230;
(d) Z. Feng, Q. Min, Y. Xiao, B. Zhang and X. Zhang, Angew. Chem., Int.
Ed., 2014, 53, 1669; (e) X. Wang, G. Liu, X. Xu, N. Shibata,
E. Tokunaga and N. Shibata, Angew. Chem., Int. Ed., 2014, 53, 1827;
( f ) P. S. Fier and J. F. Hartwig, Angew. Chem., Int. Ed., 2013, 52, 2092;
(g) L. Li, F. Wang, C. Ni and J. Hu, Angew. Chem., Int. Ed., 2013,
52, 12390; (h) G. K. Surya Prakash, C. Ni, F. Wang, Z. Zhang, R. Haiges
and G. A. Olah, Angew. Chem., Int. Ed., 2013, 52, 10835.
4 (a) P. Zhang and C. Wolf, Angew. Chem., Int. Ed., 2013, 52, 7869;
(b) P. Zhang and C. Wolf, J. Org. Chem., 2012, 77, 8840; (c) C. Han,
E. H. Kim and D. A. Colby, J. Am. Chem. Soc., 2011, 133, 5802;
(d) J. P. John and D. A. Colby, J. Org. Chem., 2011, 76, 9163.
5 Representative reviews: (a) M. N. Hopkinson, B. Sahoo, J. Li and
F. Glorius, Chem. – Eur. J., 2014, 20, 3874; (b) J. Xie, H. Jin, P. Xu
and C. Zhu, Tetrahedron Lett., 2014, 55, 36; (c) C. K. Prier, D. A. Rankic
and D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322; (d) J. Xuan and
W. Xiao, Angew. Chem., Int. Ed., 2012, 51, 6828; (e) J. M. R. Narayanam
and C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, 102.
6 (a) J. Xie, X. Yuan, A. Abdukader, C. Zhu and J. Ma, Org. Lett., 2014,
16, 1768; (b) P. Xu, A. Abdukader, K. Hu, Y. Cheng and C. Zhu, Chem.
Commun., 2014, 50, 2308; (c) P. Xu, J. Xie, Q. Xue, C. Pan, Y. Cheng
and C. Zhu, Chem. – Eur. J., 2013, 19, 14039; (d) Q. Xue, J. Xie, H. Jin,
Y. Cheng and C. Zhu, Org. Biomol. Chem., 2013, 11, 1606; (e) J. Xie,
P. Xu, H. Li, Q. Xue, H. Jin, Y. Cheng and C. Zhu, Chem. Commun.,
2013, 49, 5672; ( f ) J. Xie, Q. Xue, H. Jin, H. Li, Y. Cheng and C. Zhu,
Chem. Sci., 2013, 4, 1281.
7 Selected examples: (a) A. G. Condie, J. C. Gonzalez-Gomez and
C. R. J. Stephenson, J. Am. Chem. Soc., 2010, 132, 1464; (b) J. Xuan,
Y. Cheng, J. An, L. Lu, X. Zhang and W. Xiao, Chem. Commun., 2011,
47, 8337; (c) Y. Zou, L. Lu, L. Fu, N. Chang, J. Rong, J. Chen and
W. Xiao, Angew. Chem., Int. Ed., 2011, 50, 7171; (d) M. Rueping,
C. Vila, R. M. Koenigs, K. Poscharny and D. C. Fabry, Chem. Commun.,
2011, 47, 2360; (e) M. Rueping, S. Zhu and R. M. Koenigs, Chem.
Commun., 2011, 47, 8679; ( f ) D. P. Hari and B. Konig, Org. Lett., 2011,
13, 3852; (g) M. Rueping, S. Zhu and R. M. Koenigs, Chem. Commun.,
2011, 47, 12709; (h) M. Rueping, D. Leonori and T. Poisson, Chem.
Commun., 2011, 47, 9615; (i) S. Maity, M. Zhu, R. Shinabery and
N. Zheng, Angew. Chem., Int. Ed., 2012, 5, 222; ( j) D. B. Freeman,
L. Furst, G. A. Condie and C. R. J. Stephenson, Org. Lett., 2012, 14, 94;
(k) M. Rueping, R. M. Koenigs, K. Poscharny, D. C. Fabry, D. Leonori
and C. Vila, Chem. – Eur. J., 2012, 18, 5170; (l) M. Rueping, J. Zoller,
D. C. Fabry, K. Poscharny, R. M. Koenigs, T. E. Weirich and J. Mayer,
Chem. – Eur. J., 2012, 18, 3478; (m) S. Cai, X. Zhao, X. Wang, Q. Liu,
Z. Li and D. Z. Wang, Angew. Chem., Int. Ed., 2012, 51, 8050;
(n) J. W. Tucker, Y. Zhang, T. F. Jamison and C. R. J. Stephenson,
Angew. Chem., Int. Ed., 2012, 51, 4144; (o) S. Zhu and M. Rueping,
Chem. Commun., 2012, 48, 11960; (p) D. A. DiRocco and T. Rovis,
J. Am. Chem. Soc., 2012, 134, 8094; (q) D. B. Freeman, L. Furst,
A. G. Condie and C. R. J. Stephenson, Org. Lett., 2012, 14, 94;
(r) G. Bergonzini, C. S. Schindler, C. Wallentin, E. N. Jacobsen and
C. R. J. Stephenson, Chem. Sci., 2014, 5, 112.
Scheme 3 Possible mechanism.
of radical cation 4 and Ru(bpy)3(I).7q The resulting Ru(bpy)3(I)
reduces CCl4 to the chlorine anion and the trichloromethyl
radical. The trichloromethyl radical abstracts the H-atom from
radical cation 4 generating iminium 5. Under basic conditions,
a,a-difluorinated gem-diol 2 undergoes trifluoroacetate-release
through C–C bond fragmentation which could in situ generate
difluoroenolate 6. This active intermediate could be rapidly
trapped by iminium 5 to generate product 3.
In summary, we have developed an effective method to
synthesize C1-difluoromethylated N-aryltetrahydroisoquinolines by
means of visible-light photoredox catalysis using a,a-difluorinated
gem-diol as a difluoromethylene reagent under mild conditions.
This protocol was fairly feasible and easy-to-handle, and inexpensive
reagent CCl4 was used here as the sacrificial oxidant.
We gratefully acknowledge the Nature National Science Founda-
tion of China (21172106, 21074054, 21372114), the National Basic
Research Program of China (2010CB923303) and the Research
Fund for the Doctoral Program of Higher Education of China
(20120091110010) for their financial support.
Notes and references
1 Recent reviews: (a) K. Mu¨ller, C. Faeh and F. Diederich, Science, 2007,
317, 1881; (b) S. Purser, P. R. Moore, S. Swallow and V. Gouverneur,
Chem. Soc. Rev., 2008, 37, 320.
2 For selected reviews, see: (a) T. Furuya, A. S. Kamlet and T. Ritter,
Nature, 2011, 473, 470; (b) O. A. Tomashenko and V. V. Grushin,
Chem. Rev., 2011, 111, 4475; (c) T. Besset, C. Schneider and D. Cahard, 8 L. Chu, X. Zhang and F.-L. Qing, Org. Lett., 2009, 11, 2197.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 7521--7523 | 7523