ChemComm
Communication
sensitive allylboronic acids6 can also be reaction intermediates
under oxidative allylic C–H borylation conditions.
Support from the Swedish Research Council and the Knut
och Alice Wallenbergs Foundation, as well as a post-doctoral
fellowship for H.-P. Deng from the Wenner-Green foundation,
is gratefully acknowledged. The generous gift of B2pin2 from
Allychem is appreciated.
(2)
Notes and references
1 (a) D. G. Hall, Boronic Acids, Wiley, Weinheim, 2011; (b) I. A. I. Mkhalid,
J. M. Murphy, J. H. Barnard, T. B. Marder and J. F. Hartwig,
Chem. Rev., 2010, 110, 890; (c) J. F. Hartwig, Chem. Soc. Rev., 2011,
40, 1992; (d) T. Ishiyama and N. Miyaura, Pure Appl. Chem., 2006,
78, 1369.
We suggest that the first step of the process is formation of
allyl-palladium complex 5 by deprotonation and palladation of
the allylic position of the substrate, such as 1b (Fig. 2).7 The
subsequent step is transmetallation by B2pin2. It was shown5
that these reactions proceed easily, when weakly coordinating
ligands are on Pd. This could explain that Pd(TFA)2 is an
excellent catalyst for the process, while Pd(OAc)2 with the
chelating acetate group is inefficient. Iwasawa and co-workers9
have recently shown that Pd–Bpin complexes are stable species.
The reductive elimination of the Bpin group in 6 is supposed to
be fast5 due to the strong trans influence of the Bpin ligand.10 It
proceeds with a very high regioselectivity leading to the linear
allylboronate product. This high regioselectivity is a prerequisite
of the high selectivity of the allylation of aldehyde 2 affording the
branched homoallylic product 4d. The reductive elimination
involves formation of Pd(0), which has to be reoxidized at the
closing of the catalytic cycle. The main role of the used quinone
is reoxidation of Pd(0) to Pd(II). Added trifluoroacetic acid
increases the oxidation potential of the quinones and also
catalyzes the allylboration of the aldehydes.11
2 (a) J.-Y. Cho, M. K. Tse, D. Holmes, R. E. Maleczka and M. R. Smith,
Science, 2002, 295, 305; (b) I. I. B. A. Vanchura, S. M. Preshlock, P. C.
Roosen, V. A. Kallepalli, R. J. Staples, J. R. E. Maleczka, D. A.
Singleton and I. I. I. M. R. Smith, Chem. Commun., 2010, 46, 7724;
(c) T. Ishiyama, J. Takagi, K. Ishida, N. Miyaura, N. R. Anastasi and
J. F. Hartwig, J. Am. Chem. Soc., 2002, 124, 390; (d) T. Ishiyama,
J. Takagi, J. F. Hartwig and N. Miyaura, Angew. Chem., Int. Ed., 2002,
41, 3056; (e) T. A. Boebel and J. F. Hartwig, J. Am. Chem. Soc., 2008,
130, 7534; ( f ) D. W. Robbins, T. A. Boebel and J. F. Hartwig, J. Am.
Chem. Soc., 2010, 132, 4068; (g) C. C. Tzschucke, J. M. Murphy and
J. F. Hartwig, Org. Lett., 2007, 9, 761; (h) I. A. I. Mkhalid,
D. N. Coventry, D. Albesa-Jove, A. S. Batsanov, J. A. K. Howard,
R. N. Perutz and T. B. Marder, Angew. Chem., Int. Ed., 2006, 45, 489;
(i) T. Ishiyama, H. Isou, T. Kikuchi and N. Miyaura, Chem. Commun.,
2010, 46, 159; ( j) S. Kawamorita, H. Ohmiya and M. Sawamura,
J. Org. Chem., 2010, 75, 3855; (k) K. Yamazaki, S. Kawamorita,
H. Ohmiya and M. Sawamura, Org. Lett., 2010, 12, 3978; (l) A. Ros,
´
´
´
´
R. Lopez-Rodrıguez, B. Estepa, E. Alvarez, R. Fernandez and
J. M. Lassaletta, J. Am. Chem. Soc., 2012, 134, 4573; (m) H.-X. Dai
and J.-Q. Yu, J. Am. Chem. Soc., 2012, 134, 134; (n) B. Xiao, Y.-M. Li,
Z.-J. Liu, H.-Y. Yang and Y. Fu, Chem. Commun., 2012, 48, 4854;
(o) Y. Kuninobu, T. Iwanaga, T. Omura and K. Takai, Angew. Chem.,
Int. Ed., 2013, 52, 4431.
In summary, we have shown for the first time that allylic
C–H borylation can be performed with exocyclic alkenes.
Multicomponent reaction involving this new C–H borylation–
allylboration sequence can be performed to obtain stereodefined
homoallylic alcohols. The reaction proceeds via regioselective
borylation and a subsequent regio- and stereoselective allylation.
The mechanistically novel element in this reaction is that it
proceeds via initial formation of an allyl-palladium intermediate,
which then undergoes transmetallation with B2pin2 and a
subsequent regioselective reductive elimination of the allylboronate
product.
3 (a) I. A. I. Mkhalid, R. B. Coapes, S. N. Edes, D. N. Coventry,
F. E. S. Souza, R. L. Thomas, J. J. Hall, S. W. Bi, Z. Y. Lin and
T. B. Marder, Dalton Trans., 2008, 1055; (b) V. J. Olsson and
´
K. J. Szabo, Org. Lett., 2008, 10, 3129; (c) N. Selander, B. Willy and
´
K. J. Szabo, Angew. Chem., Int. Ed., 2010, 49, 4051; (d) T. Ohmura,
Y. Takasaki, H. Furukawa and M. Suginome, Angew. Chem., Int. Ed.,
2009, 48, 2372; (e) J. Takaya, N. Kirai and N. Iwasawa, J. Am. Chem.
Soc., 2011, 133, 12980; ( f ) N. Kirai, S. Iguchi, T. Ito, J. Takaya and
N. Iwasawa, Bull. Chem. Soc. Jpn., 2013, 86, 784; (g) A. Kondoh and
T. F. Jamison, Chem. Commun., 2010, 46, 907; (h) T. Kikuchi,
J. Takagi, H. Isou, T. Ishiyama and N. Miyaura, Chem. – Asian J.,
2008, 3, 2082; (i) T. Kikuchi, J. Takagi, T. Ishiyama and N. Miyaura,
Chem. Lett., 2008, 37, 664; ( j) I. Sasaki, H. Doi, T. Hashimoto,
T. Kikuchi, H. Ito and T. Ishiyama, Chem. Commun., 2013, 49, 7546.
4 (a) A. Caballero and S. Sabo-Etienne, Organometallics, 2007,
26, 1191; (b) V. J. Olsson and K. J. Szabo, Angew. Chem., Int. Ed.,
´
2007, 46, 6891; (c) V. J. Olsson and K. J. Szabo, J. Org. Chem., 2009,
74, 7715; (d) H. Y. Chen, S. Schlecht, T. C. Semple and J. F. Hartwig,
Science, 2000, 287, 1995; (e) J. M. Murphy, J. D. Lawrence,
K. Kawamura, C. Incarvito and J. F. Hartwig, J. Am. Chem. Soc.,
2006, 128, 13684; ( f ) C. W. Liskey and J. F. Hartwig, J. Am. Chem.
Soc., 2012, 134, 12422; (g) C. W. Liskey and J. F. Hartwig, J. Am.
Chem. Soc., 2013, 135, 3375; (h) S. H. Cho and J. F. Hartwig, J. Am.
Chem. Soc., 2013, 135, 8157; (i) T. A. Boebel and J. F. Hartwig,
Organometallics, 2008, 27, 6013; ( j) S. Shimada, A. S. Batsanov,
J. A. K. Howard and T. B. Marder, Angew. Chem., Int. Ed., 2001,
40, 2168; (k) T. Ishiyama, K. Ishida, J. Takagi and N. Miyaura, Chem.
Lett., 2001, 1082; (l) T. Ohmura, T. Torigoe and M. Suginome, J. Am.
Chem. Soc., 2012, 134, 17416; (m) T. Ohmura, T. Torigoe and
M. Suginome, Organometallics, 2013, 32, 6170; (n) T. Ohmura,
T. Torigoe and M. Suginome, Chem. Commun., 2014, 50, 6333;
(o) S. Kawamorita, T. Miyazaki, T. Iwai, H. Ohmiya and
M. Sawamura, J. Am. Chem. Soc., 2012, 134, 12924; (p) S. Kawamorita,
R. Murakami, T. Iwai and M. Sawamura, J. Am. Chem. Soc., 2013,
135, 2947; (q) T. Mita, Y. Ikeda, K. Michigami and Y. Sato, Chem.
Commun., 2013, 49, 5601.
Fig. 2 Suggested catalytic cycle exemplified by substrate 1b.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 9207--9210 | 9209