R. Hemelaere, F. Caijo, M. Mauduit, F. Carreaux, B. Carboni
SHORT COMMUNICATION
sible for the migration of olefins under metathesis conditions,
see: a) S. H. Hong, M. W. Day, R. H. Grubbs, J. Am. Chem.
Soc. 2004, 126, 7414–7415; b) S. H. Hong, A. G. Wenzel, T. T.
Salguero, M. W. Day, R. H. Grubbs, J. Am. Chem. Soc. 2007,
129, 7961–7968.
MeOH and vinyl enol ethers are known as additives to generate
ruthenium hydride species in the presence of ruthenium me-
tathesis catalysts. For detailed mechanistic investigations, see:
a) J. Louie, R. H. Grubbs, Organometallics 2002, 21, 2153–
2164; b) M. B. Dinger, J. C. Mol, Organometallics 2003, 22,
1089–1095; c) T. M. Trnka, J. P. Morgan, M. S. Sanford, T. E.
Wilhelm, M. Scholl, T.-L. Choi, S. Ding, M. W. Day, R. H.
Grubbs, J. Am. Chem. Soc. 2003, 125, 2546–2558; d) N. J. Be-
ach, K. D. Camm, D. E. Fogg, Organometallics 2010, 29, 5420–
5455; for applications to Synthesis see: e) T. J. Donohoe, T. J. C.
O’Riordan, C. P. Rosa, Angew. Chem. Int. Ed. 2009, 48, 1014–
1017; Angew. Chem. 2009, 121, 1032–1035.
For some examples of ring-closing metathesis/isomerization se-
quences, see: a) A. E. Sutton, B. A. Seigal, D. F. Finnegan,
M. L. Snapper, J. Am. Chem. Soc. 2002, 124, 13390–13991; b)
B. Schmidt, Eur. J. Org. Chem. 2003, 816–819; c) B. Schmidt,
J. Mol. Catal. A 2006, 254, 53–57; for reviews, see: d) B.
Schmidt, Eur. J. Org. Chem. 2004, 1865–1880; e) B. Alcaide, P.
Almendros, A. Luna, Chem. Rev. 2009, 109, 3817–3858.
S. S. Kinderman, R. de Gelder, J. H. van Maarseveen, H. E.
Schoemaker, H. Hiemstra, F. P. J. T. Rutjes, J. Am. Chem. Soc.
2004, 126, 4100–4101.
a) M. Arisawa, Y. Terada, K. Takahashi, M. Nakagawa, A.
Nishida, J. Org. Chem. 2006, 71, 4255–4261; b) G. L. Morgans,
E. L. Ngidi, L. G. Madeley, S. D. Khanye, J. P. Michael, C. B.
de Koning, W. A. L. van Otterlo, Tetrahedron 2009, 65, 10650–
10659.
The isomerization/ring-closing metathesis observed as a side
reaction, see: a) S. Kotha, K. Mandal, Eur. J. Org. Chem. 2006,
5387–5393; b) S. Silver, R. Leino, Eur. J. Org. Chem. 2006,
1965–1977; c) S. Fusteros, B. Fernandez, J. F. Sanz-Cervera,
N. Mateu, S. Mosulèn, R. J. Carbajo, A. Pineda-Lucena, C. R.
de Arellano, J. Org. Chem. 2007, 72, 8716–8723; d) J. Becker,
K. Bergander, R. Fröhlich, D. Hoppe, Angew. Chem. Int. Ed.
2008, 47, 1654–1657; Angew. Chem. 2008, 120, 1678–1681.
[1] D. G. Hall (Ed.), Boronic Acids: Preparation, Applications in
Organic Synthesis and Medicine, 2nd ed., Wiley-VCH,
Weinheim, Germany, 2011.
[2] B. Carboni, F. Carreaux, Science of Synthesis: Cross Coupling
and Heck Reactions (Ed.: G. Molander), Thieme, Stuttgart,
Germany, 2013, p. 265–321.
[19]
[3] a) Coupling with sodium azide: K. K. Kukkadapu, A. Ouach,
P. Lozano, M. Vaultier, M. Pucheault, Org. Lett. 2011, 13,
4132–4135; b) coupling with silanols: D. G. Chan, D. J. Win-
ternheimer, C. A. Merlic, Org. Lett. 2011, 13, 2778–2781.
[4] K. Jiménez-Aligaga, P. Bermejo-Bescos, S. Martin-Aragon,
A. G. Csakÿ, Bioorg. Med. Chem. Lett. 2013, 23, 426–429.
[5] a) With di(isopropylprenyl)borane: A. V. Kalinin, S. Scherer, V.
Snieckus, Angew. Chem. Int. Ed. 2003, 42, 3399–3404; Angew.
Chem. 2003, 115, 3521–3526; b) with pinacolborane: C. E.
Tucker, J. Davidson, P. Knochel, J. Org. Chem. 1992, 57, 3482–
3485; c) with catecholborane: H. C. Brown, S. K. Gupta, J.
Am. Chem. Soc. 1972, 94, 4370–4371.
[6] a) Using iron catalysis: M. Haberberger, S. Enthaler, Chem.
Asian J. 2013, 8, 50–54; b) using molybdenum catalysis: A. Y.
Khalimon, P. Farha, L. G. Kuzmina, G. I. Nikonov, Chem.
Commun. 2012, 48, 455–457; c) using gold catalysis: A. Leyva,
X. Zhang, A. Corma, Chem. Commun. 2009, 4947–4949; d)
using rhodium catalysis: D. M. Khramov, E. L. Rosen, J. A. V.
Er, P. D. Vu, V. M. Lynch, C. W. Bielawski, Tetrahedron 2008,
64, 6853–6862; e) using nickel catalysis: S. Pereira, M. Srebnik,
Tetrahedron Lett. 1996, 37, 3283–3286; f) using titanium cataly-
sis: X. He, J. F. Hartwig, J. Am. Chem. Soc. 1996, 118, 1696–
1702; g) using zirconium catalysis: S. Perreira, M. Srebnik, Or-
ganometallics 1995, 14, 3127–3128.
[20]
[21]
[22]
[7]
For the synthesis of (Z)-alkenylboronic esters by using this
strategy, see: a) J. Cid, J. J. Carbo, E. Fernandez, Chem. Eur. J.
2012, 18, 1512–1521; b) C. Gunanathan, M. Hölscher, F. Pan,
W. Leitner, J. Am. Chem. Soc. 2012, 134, 14349–14352.
a) J.-E. Lee, J. Kwon, J. Yun, Chem. Commun. 2008, 733–734;
b) A. Grirrane, A. Corma, H. Garcia, Chem. Eur. J. 2011, 17,
2467–2478; c) H. Jang, A. R. Zhugralin, Y. Lee, A. H. Hov-
eyda, J. Am. Chem. Soc. 2011, 133, 7859–7871.
[23]
[8]
[9]
C. Xue, S.-H. Kung, J.-Z. Wu, F.-T. Luo, Tetrahedron 2008, 64,
248–254.
[24]
a) S. Hanessian, S. Giroux, A. Larsson, Org. Lett. 2006, 8,
5481–5484. See also: b) C. S. Higman, L. Plais, D. E. Fogg,
ChemCatChem 2013, 5, 3548–3551.
[10]
a) M. Murata, S. Watanabe, Y. Masuda, Tetrahedron Lett.
1999, 40, 2585–2588; b) J. M. Brown, G. C. Lloyd-Jones, J. Am.
Chem. Soc. 1994, 116, 866–878; c) S. Eddarir, N. Cotelle, Y.
Bakkour, C. Rolando, Tetrahedron Lett. 2003, 44, 5359–5363.
a) I. A. I. Mkhalid, R. B. Coapes, S. N. Edes, D. N. Coventry,
F. E. S. Souza, R. L. Thomas, J. J. Hall, S.-W. Bi, Z. Lin, T. B.
Marder, Dalton Trans. 2008, 1055–1064; b) J. Takaya, N. Kirai,
N. Iwasawa, J. Am. Chem. Soc. 2011, 133, 12980–12983.
K. L. Billingsley, S. L. Buchwald, J. Org. Chem. 2008, 73, 5589–
5591.
a) Heck coupling: A. P. Lightfoot, G. Maw, C. Thirsk, S. J. R.
Twiddle, A. Whiting, Tetrahedron Lett. 2003, 44, 7645–7648; b)
trans-borylation: B. Marciniec, M. Jankowska, C. Pietraszuk,
Chem. Commun. 2005, 663–665.
[25]
[26]
Vinylboronate 2 was synthesized by borylation of vinylmagne-
sium bromide according to ref.[14]
[11]
The reaction of 1a in the presence of only M71-SIPr at reflux
in toluene for 1 h led to the predominant formation of a sym-
metrical stilbene derivative that must have resulted from cross-
metathesis homocoupling of the isomerized product.
The use of a preheated oil bath instead of gradual warming to
reflux was crucial for good reproducibility.
[12]
[13]
[27]
[28]
[29]
The loss of product during chromatography on silica was no-
ticed as a result of the partial hydrolysis of the boronic ester.
The synthesis of 4a from 1a was possible by using the HG-II
catalyst over two steps. An isomerization reaction [HG-II
(3 mol-%), toluene, 110 °C, 1 h] followed by cross-metathesis
with 2 equiv. of vinylboronate 2 [HG-II (3 mol-%), CH2Cl2,
45 °C, 18 h] furnished the desired product in 51% overall yield
compared to 62% by using M71-SIPr in one step.
The M71-SIPr complex is stable up to one month in solution,
see ref.[17a] The increased chemical stability of Hoveyda-type
catalysts promoted by the SIPr ligand was recently studied, see:
D. J. Nelson, P. Queval, M. Rouen, M. Magrez, F. Caijo, E.
Borré, I. Laurent, C. Crévisy, O. Baslé, M. Mauduit, J. M.
Percy, ACS Catal. 2013, 3, 259–264.
[14]
[15]
C. Morrill, R. H. Grubbs, J. Org. Chem. 2003, 68, 6031–6034.
Products can be also generated with high (Z) selectivity by
using a tungsten-based monoaryloxide pyrrolide (MAP). See:
E. T. Kiesewetter, R. V. O’Brien, E. C. Yu, S. J. Meek, R. R.
Schrock, A. H. Hoveyda, J. Am. Chem. Soc. 2013, 135, 6026–
6029.
[30]
[31]
[16]
[17]
R. Hemelaere, F. Carreaux, B. Carboni, J. Org. Chem. 2013,
78, 6786–6792.
a) H. Clavier, F. Caijo, E. Borré, D. Rix, F. Boeda, S. Nolan,
M. Mauduit, Eur. J. Org. Chem. 2009, 4254–4265; b) F. Caijo,
F. Tripoteau, A. Bellec, C. Crévisy, O. Baslé, M. Mauduit, O.
Briel, Catal. Sci. Technol. 2013, 3, 429–435.
We were not able to observe a hydride ruthenium species by
1H NMR spectroscopy. It is not excluded that another active
species for the isomerization is formed from the decomposition
of M71-SIPr.
[18]
For the pioneering contributions of Grubbs that showed that
the ruthenium hydride species formed from the thermal decom-
position of ruthenium metathesis catalysts can be likely respon-
3332
www.eurjoc.org
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2014, 3328–3333