ChemComm
Communication
9, 7983; (c) Y. J. Lee, J. Seo, D. G. Kim, H. Park and B. S. Jeong,
Synlett, 2013, 701; (d) P. Finkbeiner, N. M. Weckenmann and
B. J. Nachtsheim, Org. Lett., 2014, 16, 1326; (e) S. Peddibhotla and
J. J. Tepe, J. Am. Chem. Soc., 2004, 126, 12776; ( f ) R. S. Z. Saleem and
J. J. Tepe, J. Org. Chem., 2010, 75, 4330.
6 (a) Z.-C. Geng, N. Li, J. Chen, X.-F. Huang, B. Wu, G.-G. Liu and
X.-W. Wang, Chem. Commun., 2012, 48, 4713; (b) L. Tian, G.-Q. Xu,
Y.-H. Li, Y.-M. Liang and P.-F. Xu, Chem. Commun., 2014, 50, 2428;
(c) M. G. Esguevillas, J. Adrio and J. C. Carretero, Chem. Commun.,
2013, 49, 4649; (d) W.-Y. Han, S.-W. Li, Z.-J. Wu, X.-M. Zhang and
W.-C. Yuan, Chem. – Eur. J., 2013, 19, 5551.
7 L. D. Amico, L. Albrecht, T. Naicker, P. H. Poulsen and
K. A. Jørgensen, J. Am. Chem. Soc., 2013, 135, 8063.
8 For reviews, see: (a) K. A. Jørgensen, Angew. Chem., Int. Ed., 2000,
39, 3558; (b) K. C. Nicolaou, S. A. Snyder, T. Montagnon and
G. Vassilikogiannakis, Angew. Chem., Int. Ed., 2002, 41, 1668;
(c) E. J. Corey, Angew. Chem., Int. Ed., 2002, 41, 1650; For selected
examples, see: (d) G. Ujaque, P. S. Lee, K. N. Houk, M. F. Hentemann
and S. J. Danishefsky, Chem. – Eur. J., 2002, 8, 3423.
9 (a) Y. Huang, A. K. Unni, A. N. Thadani and V. H. Rawal, Nature,
2003, 424, 146; (b) Q. Fan, L. Lin, J. Liu, Y. Huang, X. Feng and
G. Zhang, Org. Lett., 2004, 6, 2185; (c) Z. Yu, X. Liu, Z. Dong, M. Xie
and X. Feng, Angew. Chem., Int. Ed., 2008, 47, 1308; (d) L. Lin,
Y. Kuang, X. Liu and X. Feng, Org. Lett., 2011, 13, 3868; (e) L. Lin,
Z. Chen, X. Yang, X. Liu and X. Feng, Org. Lett., 2008, 10, 1311;
( f ) A. K. Unni, N. Takenaka, H. Yamamoto and V. H. Rawal, J. Am.
Chem. Soc., 2005, 127, 1336.
10 (a) K. A. Jørgensen, Eur. J. Org. Chem., 2004, 2093; (b) B. Zhao and
T.-P. Loh, Org. Lett., 2013, 15, 2914; (c) H.-L. Cui and F. Tanaka,
Chem. – Eur. J., 2013, 19, 6213; (d) Y. Huang and V. H. Rawal, J. Am.
Chem. Soc., 2002, 124, 9662.
11 (a) S. Danishefsky, T. Kitahara, C. F. Yan and J. Morris, J. Am. Chem.
Soc., 1979, 101, 6996; (b) S. J. Danishefsky and M. P. DeNinno,
Angew. Chem., Int. Ed., 1987, 26, 15; (c) L. L. Lin, X. H. Liu and
M. X. Feng, Synlett, 2007, 2147; (d) J. Savard and P. Brassard,
Tetrahedron Lett., 1979, 20, 4911.
Scheme 2 A possible reaction pathway.
stepwise vinylogous aldol/cyclization cascade cannot be ruled
out. Initially, both of the reaction partners are synergistically
activated by the bifunctional catalyst F to form the hydrogen-
bonding complex 4, which then undergoes [4+2] annulations
through Si face attack of dienolates to isatins to give intermedi-
ate 5. Finally, tautomerization and protonation of intermediate 5
give rise to the desired product 3 and regenerate the catalyst.
In summary, we have developed an efficient approach for the
construction of chiral spirooxindole dihydropyranones through
a HDA reaction of isatins and olefinic azlactones. Vinylogous
reactivity of azlactones was readily realized through bifunc-
tional activation of both of the reaction partners, and the
desired products were produced generally in good yields and
with good to excellent enantioselectivity. Further applications
of this chemistry toward novel reaction design and synthesis of
complex molecules are currently underway.
12 (a) S. Dong, X. Liu, X. Chen, F. Mei, Y. Zhang, B. Gao, L. Lin and
X. Feng, J. Am. Chem. Soc., 2010, 132, 10650; For related examples,
see: (b) M. Terada and H. Nii, Chem. – Eur. J., 2011, 17, 1760;
(c) Y. Ying, Z. Chai, H. F. Wang, P. Li, C. W. Zheng, G. Zhao and
Y. P. Cai, Tetrahedron, 2011, 67, 3337.
We are grateful to the NSFC (21032005, 21172097 and
21372105), the National Basic Research Program of China (no.
2010CB833203), the International S&T Cooperation Program of
China (2013DFR70580), the National Natural Science Founda-
tion from Gansu Province of China (no. 1204WCGA015), and the
‘‘111’’ program from MOE of P. R. China.
13 For recent examples, see: (a) I. Saidalimu, X. Fang, X. P. He, J. Liang,
X. Yang and F. Wu, Angew. Chem., Int. Ed., 2013, 52, 5566; (b) B. Zhu,
W. Zhang, R. Lee, Z. Han, W. Yang, D. Tan, K. W. Huang and Z. Y. Jiang,
Angew. Chem., Int. Ed., 2013, 52, 6666; (c) Y. Ogura, M. Akakura,
A. Sakakura and K. Ishihara, Angew. Chem., Int. Ed., 2013, 52, 8299.
14 (a) S. Zhao, J.-B. Lin, Y.-Y. Zhao, Y.-M. Liang and P.-F. Xu, Org. Lett.,
2014, 16, 1802; (b) G.-J. Duan, J.-B. Ling, W.-P. Wang, Y.-C. Luo and
P.-F. Xu, Chem. Commun., 2013, 49, 4625; (c) L. Tian, X.-Q. Hu,
Y.-H. Li and P.-F. Xu, Chem. Commun., 2013, 49, 7213; (d) Z.-X. Jia,
Y.-C. Luo, X.-N. Cheng, P.-F. Xu and Y.-C. Gu, J. Org. Chem., 2013,
78, 6488; (e) Y. Su, J.-B. Ling, S. Zhang and P.-F. Xu, J. Org. Chem.,
2013, 78, 11053; ( f ) J.-B. Ling, Y. Su, H.-L. Zhu, G.-Y. Wang and
P.-F. Xu, Org. Lett., 2012, 14, 1090; (g) J. B. Ling, W.-P. Wang and
P.-F. Xu, ChemCatChem, 2011, 3, 302; (h) Y.-L. Zhao, Y. Wang, J. Cao,
Y.-M. Liang and P.-F. Xu, Org. Lett., 2014, 16, 2438.
15 For the synthesis of spirooxindole dihydropyrones via covalent
nucleophilic or NHC catalysis, see: (a) L. T. Shen, P. L. Shao and
S. Ye, Adv. Synth. Catal., 2011, 353, 1943; (b) C. Yao, Z. Xiao, R. Liu,
T. Li, W. Jiao and C. Yu, Chem. – Eur. J., 2013, 19, 456; (c) X. Chen,
S. Yang, B. A. Song and Y. R. Chi, Angew. Chem., Int. Ed., 2013,
52, 11134; (d) R. Liu, C. Yu, Z. Xiao, T. Li, X. Wang, Y. Xie and C. Yao,
Org. Biomol. Chem., 2014, 12, 1885.
Notes and references
1 (a) R. C. Fuson, Chem. Rev., 1935, 16, 1; (b) G. Casiraghi, L. Battistini,
C. Curti, G. Rassu and F. Zanardi, Chem. Rev., 2011, 111, 3076; (c) S. E.
Denmark, J. R. Heemstra Jr and G. L. Beutner, Angew. Chem., Int. Ed.,
2005, 44, 4682; (d) G. Casiraghi and F. Zanardi, Chem. Rev., 2000,
100, 1929.
2 (a) M. Mahlau and B. List, Angew. Chem., Int. Ed., 2013, 52, 518;
(b) K. Brak and E. N. Jacobsen, Angew. Chem., Int. Ed., 2013, 52, 534;
(c) A. Grossmann and D. Enders, Angew. Chem., Int. Ed., 2012, 51, 314;
´
(d) J. Aleman and S. Cabrera, Chem. Soc. Rev., 2013, 42, 774;
(e) S. Shirakawa and K. Maruoka, Angew. Chem., Int. Ed., 2013, 52, 2.
3 For selected examples, see: (a) H. Ube, N. Shimada and M. Terada,
Angew. Chem., Int. Ed., 2010, 49, 1858; (b) G. Bergonzini, S. Vera and
P. Melchiorre, Angew. Chem., Int. Ed., 2010, 49, 9685; (c) L. Ratjen,
16 (a) D. J. Cheng, Y. Ishihara, B. Tan and C. F. Barbas, III, ACS Catal., 2014,
4, 743; (b) G. S. Singh and Z. Y. Desta, Chem. Rev., 2012, 112, 6104;
(c) C. Carlo and M. Paolo, Org. Lett., 2012, 14, 5590; (d) X. Xie, C. Peng,
G. He, H.-J. Leng, B. Wang, W. Huang and B. Han, Chem. Commun.,
2012, 48, 10487; (e) A. K. Franz, P. D. Dreyfuss and S. L. Schreiber, J. Am.
Chem. Soc., 2007, 129, 1020; ( f ) M. P. Castaldi, D. M. Troast and
J. A. Porco, Jr., Org. Lett., 2009, 11, 3362.
17 (a) Y. Iwabuchi, M. Nakatani, N. Yokoyama and S. Hatakeyama,
J. Am. Chem. Soc., 1999, 121, 10219; (b) A. Nakano, K. Takahashi,
J. Ishihara and S. Hatakeyama, Org. Lett., 2006, 8, 5357.
´
´
P. Garcıa-Garcıa, F. Lay, M. E. Beck and B. List, Angew. Chem., Int.
Ed., 2011, 50, 754; (d) C. Curti, G. Rassu, V. Zambrano, L. Pinna,
G. Pelosi, A. Sartori, L. Battistini, F. Zanardi and G. Casiraghi,
Angew. Chem., Int. Ed., 2012, 51, 6200; (e) D. Uraguchi,
K. Yoshioka, Y. Ueki and T. Ooi, J. Am. Chem. Soc., 2012, 134, 19370.
4 (a) A.-N. R. Alba and R. Rios, Chem. – Asian J., 2011, 6, 720; (b) J. S. Fisk,
R. A. Mosey and J. J. Tepe, Chem. Soc. Rev., 2007, 36, 1432; (c) R. A. Mosey,
J. S. Fisk and J. J. Tepe, Tetrahedron: Asymmetry, 2008, 19, 2755;
(d) N. M. Hewlett, C. D. Hupp and J. J. Tepe, Synthesis, 2009, 2825.
5 (a) B. M. Trost and L. C. Czabaniuk, Chem. – Eur. J., 2013, 19, 15210;
(b) J. S. Oh, K. Kim II and C. E. Song, Org. Biomol. Chem., 2011,
18 CCDC 991736 see the ESI† for details.
8936 | Chem. Commun., 2014, 50, 8934--8936
This journal is ©The Royal Society of Chemistry 2014