RSC Advances
Communication
2 (a) D. J. Bentley, J. Fairhurst, P. T. Gallagher,
A. K. Manteuffel, C. J. Moody and J. L. Pinder, Org. Biomol.
Chem., 2004, 2, 701–708; (b) M. Inman and C. J. Moody,
Chem. Commun., 2011, 47, 788–790; (c) M. Inman,
A. Carbone and C. J. Moody, J. Org. Chem., 2012, 77, 1217–
1232.
3 (a) H. Hemetsberger and D. Knittel, Monatsh. Chem., 1972,
103, 194–204; (b) A. G. O'Brien, F. Levesque and
P. H. Seeberger, Chem. Commun., 2011, 47, 2688–2690.
4 B. J. Stokes, H. Dong, B. E. Leslie, A. L. Pumphrey and
T. G. Driver, J. Am. Chem. Soc., 2007, 129, 7500–7501.
5 J. Bonnamour and C. Bolm, Org. Lett., 2011, 13, 2012–2014.
6 At the time of submission of this work, the prices of metal
catalysts mentioned from Strem Chemicals, Inc. were as
followed: ZrCl4 $82.00 (250 g), AgNO3 $42.00 (10 g), HfCl4
$299.00 (250 g) and Fe(OTf)2 $264.00 (100 g).
Fig. 1 The calculated DFT energy profiles15 associated for the two
mechanisms proposed in Scheme 1 (see ESI† for further details).
7 N. N. Greenwood and A. Earnshaw, in Chemistry of the
Elements, Butterworth-Heinemann, Oxford, 2nd edn, 1997.
8 J. Karthikeyan, R. Haridharan and C.-H. Cheng, Angew.
Chem., Int. Ed., 2012, 51, 12343–12347.
Conclusions
9 (a) S. K. Guchait, M. Kashyap and H. Kamble, J. Org. Chem.,
In conclusion, a cost-effective synthesis of indole derivatives is
presented. We have established the use of commercially avail-
able and inexpensive zirconium(IV) chloride as a novel reagent
to promote the nitrogen extrusion of aryl azidoacrylates fol-
lowed by an annulation process at low temperature and in short
reaction time to give the desired indole products in moderate to
good yields. This provides a fast and mild synthetic protocol for
the synthesis of indole derivatives which is applicable to a
variety of substrates.
ˆ ˇ
ˇ
2011, 76, 4753–4758; (b) R. Lenarsic, M. Kocevar and
S. Polanc, J. Org. Chem., 1999, 64, 2558–2563.
10 E. Samuel, J. F. Harrod, M. J. McGlinchey, C. Cabestaing and
F. Robert, Inorg. Chem., 1994, 33, 1292–1296.
11 (a) C. Janiak, K. C. H. Lange and T. G. Scharmann, Appl.
Organomet. Chem., 2000, 14, 316–324; (b) M. Banerjee,
R. W. Seidel, M. Winter, H. Becker, D. Rogalla and A. Devi,
Dalton Trans., 2014, 43, 2384.
12 (a) S. A. Scholl, G. T. Plundrich, H. Wadepohl and L. H. Gade,
Inorg. Chem., 2013, 52, 10158–10166; (b) T. Gehrmann,
J. Lloret-Fillol, H. Herrmann, H. Wadepohl and L. H. Gade,
Organometallics, 2013, 32, 3877–3889; (c) S. A. Scholl,
H. Wadepohl and L. H. Gade, Organometallics, 2013, 32,
937–940; (d) S. Dagorne, S. Bellemin-Laponnaz and
C. Romain, Organometallics, 2013, 32, 2736–2743.
13 (a) K. Manna, W. C. Everett, G. Schoendorff, A. Ellern,
T. L. Windus and A. D. Sadow, J. Am. Chem. Soc., 2013,
135, 7235–7250; (b) E. Y. Tshuva, I. Goldberg, M. Kol,
H. Weitman and Z. Goldschmidt, Chem. Commun., 2000,
379–380.
Acknowledgements
This research work was supported in part by grants from Center
of Excellence on Environmental Health and Toxicology, Science
& Technology Postgraduate Education and Research Develop-
ment Office (PERDO), Ministry of Education, and Chulabhorn
Research Institute.
Notes and references
14 (a) V. A. Mamedov, E. A. Berdnikov, S. Tsuboi,
H. Hamamoto, T. Komiyama, E. A. Gorbunova,
A. T. Gubaidullin and I. A. Litvinova, Russ. Chem. Bull.,
2006, 55, 1402–1410; (b) S. Tsuboi, H. Furutani, A. Takeda,
K. Kawazoe and S. Sato, Bull. Chem. Soc. Jpn., 1987, 60,
2475–2479.
15 Quantum chemical calculations were performed using the
M06 density functional theory (DFT) method, with the
LANL2DZ basis set in the Gaussian 09 program. Minima
and transition states were conrmed as stationary points
using the results from frequency calculations. Minima
showed positive frequencies while transitions states
showed a single negative frequency corresponding to the
expected reaction coordinates. For more details, see the
ESI.†
1 (a) A. Arcadi, G. Bianchi and F. Marinelli, Synthesis, 2004,
610–618; (b) Y. Du, R. Liu, G. Linn and K. Zhao, Org. Lett.,
2006, 8, 5919–5922; (c) G. A. Kraus and H. Guo, Org. Lett.,
2008, 10, 3061–3063; (d) N. Sakai, K. Annaka, A. Fujita,
A. Sato and T. Konakahara, J. Org. Chem., 2008, 73, 4160–
4165; (e) Z. He, H. Li and Z. Li, J. Org. Chem., 2010, 75,
4296–4299; (f) Q. Yan, J. Luo, D. Zhang-Negrerie, H. Li,
X. Qi and K. Zhao, J. Org. Chem., 2011, 76, 8690–8697; (g)
Y. Wei, I. Deb and N. Yoshikai, J. Am. Chem. Soc., 2012,
¨
134, 9098–9101; (h) S. Gore, S. Baskaran and B. Konig, Org.
Lett., 2012, 14, 4568–4571; (i) M. Inman and C. J. Moody, J.
Org. Chem., 2010, 75, 6023–6026; (j) M. Inman and
C. J. Moody, Chem. Sci., 2013, 4, 29–41; (k) Y. Zhang, S. Liu,
W. Yu, M. Hu, G. Zhang and Y. Yu, Tetrahedron, 2013, 69,
2070–2074.
20052 | RSC Adv., 2014, 4, 20048–20052
This journal is © The Royal Society of Chemistry 2014