592
P. Bindu, S. R. Naini, K. Shanmukha Rao, P. K. Dubey, and S. Pal
Vol 51
1H, J = 3.5 and 1.4 Hz), 7.12 (dd, 1H, J = 5.0 and 3.5 Hz), 2.56 (s,
3H); 13C NMR (CDCl3, 100 MHz) 190.7, 144.5, 132.6, 128.2,
133.8, 26.8.
Tris pH 8.0, 3-mM EDTA, 15-mM hematin, 150 units enzyme,
and 8% DMSO. The mixture was pre-incubated at 25ꢀC for
15 min before initiation of enzymatic reaction in the presence of
compound/vehicle. The reaction was initiated by the addition of
100-mM arachidonic acid and 120-mM TMPD. The enzyme
activity was measured by estimation of the initial velocity of
TMPD oxidation over the first 25 s of the reaction followed from
an increase in absorbance at 603 nM.
1-(Thiophen-2-yl)propan-1-one (3i). Light brown oil [41];
1
MS m/z 140 (M+, 100%); IR nmax/cmÀ1 (KBr): 1665; H NMR
(CDCl3, 400 MHz) 7.72 (dd, 1H, J = 3.8 and 1.2 Hz), 7.66 (dd,
1H, J = 5.0 and 1.2 Hz), 7.12 (dd, 1H, J = 5.0 and 3.8 Hz), 2.89
(q, J = 7.2 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H); 13C NMR (CDCl3,
100 MHz) 193.7, 144.1, 133.6, 131.2, 128.3, 32.52, 8.51.
2-(4-Isobutylphenyl)-1-(thiophen-2-yl)propan-1-one (3j).
MS m/z 273 (M+, 100%); IR nmax/cmÀ1 (KBr): 1659; 1H
NMR (CDCl3, 400 MHz) d 7.67 (d, 1H, J = 3.7 Hz); 7.55 (d,
1H, J = 4.8 Hz); 7.22 (d, 2H, J = 8.1 Hz); 7.08–7.02 (m, 3H);
4.47 (q, 1H, J = 7.0 Hz); 2.41 (d, 2H, J = 7.3 Hz); 1.81–1.79
(m, 1H); 1.52 (d, 3H, J = 7.0 Hz); 0.87 (d, 6H, J = 6.6 Hz);
elemental analysis found C, 74.66; H, 7.31; Calcd for
C17H20SO; C, 74.96; H, 7.40.
Acknowledgments. The authors thank Mr. M. N. Raju, the chairman
of the MNR Educational Trust, for the constant support and
encouragement.
REFERENCES AND NOTES
[1] Sweetman, C. S. Martindale: The Complete Drug Reference,
34th edn. Pharmaceutical Press, London, 2005.
[2] Stote, R. M.; Maass, A. R.; Cherrill, D. A.; Beg, M. M. A.;
Alexander, F. J. Pharmacol Clin 1976, 19.
2-(1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-
1-(thiophen-2-yl)ethanone (3k). MS m/z 423 (M+, 100%); IR
n
max/cmÀ1 (KBr): 1659; 1H NMR (DMSO-d6, 400 MHz) d 8.2 (d,
1H, J = 8.3 Hz), 8.1 (d, 1H, J = 8.3 Hz), 7.75–7.65 (m, 4H), 7.62–
7.60 (m, 1H), 7.18 (s, 1H), 6.92 (d, 1H, J = 8.3 Hz), 6.73 (d, 1H,
J = 8.3 Hz), 4.45 (s, 2H), 3.73 (s, 3H), 2.20 (s, 3H); elemental
[3] Fuerstner, A.; Voigtlaender, D.; Schrader, W.; Giebel, D.;
Reetz, M. T. Org Lett 2001, 3, 417.
[4] Barrett, A. G. M.; Bouloc, N.; Braddock, D. C.; Chadwick, D.;
Henderson, D. A. Synlett 2002, 1653.
[5] Veverkova, E.; Gotov, B.; Mitterpach, R.; Toma, S. Coll
Czech Chem Commun 2000, 65, 644.
analysis found C, 65.36; H, 4.32;
N 3.19; Calcd for
C23H18ClNSO3; C, 65.17; H, 4.28; N, 3.30.
(2-(2,3-Dimethylphenylamino)phenyl)(thiophen-2-yl)methanone
(3l). MS m/z 308 (M+, 100%); IR nmax/cmÀ1 (KBr): 1629, 1586;
1H NMR (CDCl3, 400 MHz) d 7.92 (dd, 1H, J = 7.9 and 1.2 Hz);
7.46–6.92 (m, 9H); 6.38 (d, 1H, J = 8.6 Hz); 2.3 (s, 3H); 2.1
(s, 3H); elemental analysis found C, 74.45; H, 5.35; Calcd for
C19H17 NSO; C, 74.23; H, 5.57.
[6] Steinkopf, S. Justus Liebigs Ann Chem 1921, 424, 22.
[7] Hartough, K. J Am Chem Soc 1947, 69, 1012.
[8] Konishi, H.; Suetsugu, K.; Okano, T.; Kiji, J. Bull Chem Soc
Jpn 1982, 55, 957.
[9] Paul, V.; Sudalai, A.; Daniel, T.; Srinivasan, K. V. Tetrahe-
dron Lett 1994, 35, 2601.
[10] Nishimoto, Y.; Babu, S. A.; Yasuda, M.; Baba, A. J Org Chem
2008, 73, 9465.
Docking procedure.
In the present molecular docking
studies, we have performed the energy minimization and
conformational search with the MacroModel application in the
Schrodinger package. Compounds 3j–3l were energy minimized
for flexibility of the molecules, and then conformational search
was followed. We have used OPLS_2005 force field and water as
implicit solvent. The Polak–Ribier conjugate gradient method of
minimization with 500 iterations was followed with a threshold
gradient on 0.05 kJ/mol. The conformational search conducted
was based on Montecarlo multiple minimum torsional sampling.
The ligands were then finally prepared with LigPrep application.
[11] Keumi, T.; Taniguchi, R.; Kitajima, H. Synthesis 1980, 139.
[12] Keumi, T.; Saga, H.; Kitajima, H. Bull Chem Soc Jpn 1980,
53, 1638.
[13] Effenberger, F.; Koenig, G.; Klenk, H. Chem Ber 1981, 114, 926.
[14] Xin, B.; Zhang, Y.; Cheng, K. J Org Chem 2006, 71, 5725.
[15] Xin, B.-W. Synth Commun 2008, 38, 2826.
[16] Xin, B.; Zhang, Y.; Cheng, K. Synthesis 2007, 1970.
[17] Kakino, R.; Yasumi, S.; Shimizu, I.; Yamamoto, A. Bull Chem
Soc Jpn 2002, 75, 137.
[18] Tambade, P. J.; Patil, Y. P.; Panda, A. G.; Bhanage, B. M. Eur
J Org Chem 2009, 3022.
[19] Mingji, D.; Liang, B.; Wang, C.; You, Z.; Xiang, J.; Dong, G.;
Chen, J.; Yang, Z. Adv Synth Catal 2004, 346, 1669.
[20] Bumagin, N. A.; Ponomaryov, A. B.; Beletskaya, I. P.
Tetrahedron Lett 1985, 26, 4819.
[21] Kang, S.-K.; Lee, S.-W.; Ryu, H.-C. Chem Commun 1999, 2117.
[22] Kang, S.-K.; Ryu, H.-C.; Lee, S.-W. J Chem Soc Perkin Trans
1 1999, 2661.
[23] Haddach, M.; McCarthy, J. R. Tetrahedron Lett 1999, 40, 3109.
[24] Nishihara, Y.; Inoue, Y.; Fujisawa, M.; Takagi, K. Synlett
2005, 2309.
[25] Polackova, V.; Toma, S.; Augustinova, I. Tetrahedron 2006,
62, 11675.
The COX-1 (3N8X) and COX-2 (3LN1) crystal structures were
retrieved from the protein data bank and refined with the Protein
Preparation Wizard application in which the hydrogens were
added and missing side chains and loops were filled with Prime
application. Water molecules were deleted except those within
the distance of 5A from the het(hetroatom) groups. Finally, the
protein was optimized and minimized using OPLS_2005 force
filed. Grid-based docking was performed in the present study.
Pharmacology.
In vitro biochemical assays (spectrophotometric assay of
COX-1 and COX-2).
Microsomal fraction of ram seminal
[26] Rao, M. L. N.; Jadhav, D. N.; Venkatesh, V. Tetrahedron Lett
2009, 50, 4268
[27] Bumagin, N. A.; Korolev, D. N. Tetrahedron Lett 1999, 40, 3057.
[28] Zhang, Y.; Rovis, T. J Am Chem Soc 2004, 126, 15964.
[29] Rieke, R. D.; Suh, Y. S.; Kim, S.-H. Tetrahedron Lett 2005,
46, 5961.
[30] Cahiez, G.; Martin, A.; Delacroix, T. Tetrahedron Lett 1999,
40, 6407.
[31] Malanga, C.; Aronica, L. A.; Lardicci, L. Tetrahedron Lett
1995, 36, 9185.
vesicles were used as a source of COX-1 enzyme and
microsomes from sf9 cells infected with baculovirus containing
human COX-2 cDNA were used as a source of COX-2 enzyme.
Enzyme activity was measured using a chromogenic assay based
on oxidation of N,N,N′,N′-tetramethyl-p-phenylenediamine
(TMPD) during the reduction of PGG2 to PGH2 as per the
procedure described by Copeland et al. [51] with some
modifications. The assay mixture (1000 mL) contained 100-mM
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet