4870
J . Org. Chem. 1996, 61, 4870-4871
Communications
1,3-Ster eocon tr ol w ith Br om oa llen es.
Syn th esis of N-Boc-ADDA, th e Un iqu e
Am in o Acid P r esen t in Sever a l In h ibitor s
of Ser in e/Th r eon in e P h osp h a ta ses
Sch em e 1
F. D’Aniello and A. Mann*
Laboratoire de Pharmacochimie Mole´culaire, UPR 421,
Centre de Neurochimie, 5, rue B. Pascal,
F-67084-Strasbourg Cedex, France
M. Taddei
Dipartimento di Chimica, Universita` di Sassari,
I-07100 Sassari, Italy
Received March 13, 1996
Mycrocystins, nodularin and motuporin, both cyclic
peptides from cyanobacteria, have a common feature, a
unique C20 amino acid ADDA (1) that seems to be
essential for their biological functions.1 In the reported
syntheses of ADDA, the E,E-dienic system present in
1 was prepared via J ulia-Wittig-type chemistry, which
did not allow for the complete control of the stereochem-
istry of the double bonds.2-5
Sch em e 2a
We designed an alternative strategy to 1, which is
depicted in retrosynthetic Scheme 1. In this strategy,
the disconnection of the C5-C6 bond of 1 suggested two
fragments, C1-C5 (2) and C6-C10 (3), which, in a forward
synthetic direction, could be coupled together under Stille
conditions to give ADDA (1).6 We envisioned that the
C1-C5 fragment (2) could be derived from the â alkylated
R-amino aldehyde 4, which in turn could originate from
(R)-aspartic acid. For fragment C6-C10 (3), a disubsti-
tuted chiral alkyne, we believed the stereochemistry of
the stereogenic center at carbon C-8 could be controlled
via SN2′ alkylation of chiral bromoallene 5, derived from
enantiomerically pure phenyllactic acid (6) (Scheme 1).
A similar diastereoselectivity has been demonstrated in
our recent work.7
a
Key: (a) EtSH, DCC, DMAP, CH2Cl2, rt (81%); (b) Et3SiH,
Pd/C, acetone, rt (82%); (c) CHI3, CrCl2, THF (75%); (d)
Me3SnSnMe3, Pd(PPh3)4, THF, 50 °C (74%).
in 2 was exclusively trans as suggested by the coupling
constant of the two vinylic protons (J ) 19 Hz).
The preparation of the C6-C10 fragment is depicted in
Scheme 3.8 Commercially available (S)-phenyllactic acid
(6) was transformed into the Weinreb amide 9 using
(benzotriazol-1-yloxy)tripyrrolidinophosphonium hexaflu-
orophosphate (py-BOP) as a coupling reagent (72% yield
over the two steps).12 The N-methyl-N-methoxy group
worked first as a protecting group during the methylation
Scheme 2 outlines the elaboration of C1-C5 frag-
ment.4,8,9 To selectively reduce the carboxylic group to
an aldehyde in the presence of a methyl ester, we decided
to convert acid 7 into the corresponding ethylthioester.
Subsequent reduction with triethylsilane in the presence
of catalytic amounts of Pd/C gave aldehyde 4 in 66% yield
over the two steps.10 Further elaboration of aldehyde 4
into vinylstannane 2 was done using the following
sequence: reaction with CHI3 in the presence of CrCl2
gave trans vinyl iodide 8,11 and stannylation with hexa-
methyldistannane in the presence of freshly prepared Pd-
(PPh3)4, yielded trans vinylstannane 2 (56% yield over
the two steps).6 The geometry of the vinylic hydrogens
(8) Physical data for 2, 3, 5, and 12: 2: 1H NMR (200 MHz, CDCl3,
50 °C, TMS) δ ) 0.09 (s, J ) 27 Hz, 9 H, coupling with 119Sn), 1.19 (d,
J ) 7.1 Hz, 3 H), 1.42 (s, 9 H), 2.69-2.79 (m, 1 H), 3.62 (s, 3 H), 4.29-
4.33 (m, 1 H), 5.30 (d, J ) 9.2 Hz, 1 H), 5.85 (dd, J ) 19, 4.2 Hz, 1 H),
6.15 (d, J ) 19 Hz, 1 H); 13C NMR (50 MHz, CDCl3, 50 °C, TMS) δ )
-9.7 (t, J ) 173 Hz), 14.2, 28.2, 43.1, 51.4, 56.2, 79.2, 130.7, 145.2,
155.5, 175.2. 3: 1H NMR (200 MHz, CDCl3, 25 °C, TMS) δ ) 1.19 (d,
J ) 7 Hz, 3 H), 1.84 (d, J ) 2.4 Hz, 3 H), 2.52-2.60 (m, 1 H), 2.80-
3.04 (m, 2 H), 3.21-3.33 (m, 1 H), 3.28 (s, 3 H), 7.20-7.30 (m, 5 H);
13C NMR (50 MHz, CDCl3) δ ) 3.6, 17.4, 30.1, 37.8, 58.4, 65.8, 81.1,
85.8, 126.0, 128.1, 129.5, 139.1; IR (CCl4) ν ) 3034, 2926, 1939, 1453,
1119 cm-1; MS (EI) m/z 202 (3) [M+], 170 (7), 155 (4), 135 (100), 111
* To whom correspondence should be addressed. Tel: (33) 88 45 66
84. FAX: (33) 88 60 08 10. E-mail: mann@neurochem.u-strasbg.fr.
(1) Goldberg, J .; Huang, H.; Kwon, Y.; Greengard, P.; Nairn, A. C.;
Kuriyan, J . Nature 1995, 376, 745 and references cited therein.
(2) Namikoshi, M.; Rinehart, K. L.; Dahlem, A. M.; Beasley, V. R.;
Carmichael, W. W. Tetrahedron Lett. 1989, 30, 4349.
(3) Chakraborty, T. K.; J oshi, S. P. Tetrahedron Lett. 1990, 31, 2043.
(4) Beatty, M. F.; J ennings-White, C.; Avery, M. A. J . Chem. Soc.,
Perkin Trans. 1 1992, 1637.
(5) Schreiber, S. L.; Valentekovich, R. J . J . Am. Chem. Soc. 1995,
117, 9069.
(6) Stille, J . K.; Groh, B. L. J . Am. Chem. Soc. 1987, 109, 813.
(7) D’Aniello, F.; Mann, A.; Taddei, M. Tetrahedron Lett. 1994, 35,
7775.
(56), 103 (30), 91 (29), 77 (10); [R]20 ) -60.2 (c ) 1, CHCl3). 5: 1H
D
NMR (200 MHz, CDCl3, 25 °C, TMS) δ ) 2.25 (d, J ) 3 Hz, 3 H), 2.82-
3.03 (m, 2 H), 3.34 (s, 3 H), 3.93-4.04 (m, 1 H), 5.10-5.18 (m, 1 H),
7.18-7.35 (m, 5 H); 13C NMR (50 MHz, CDCl3, 25 °C, TMS) δ ) 25.1,
41.8, 56.8, 65.8, 79.8, 97.8, 126.3, 128.2, 129.4, 137.5, 203.3; IR (CCl4)
ν 3069, 2928, 1958, 1604, 1454, 1105 cm-1; MS (IE) m/z 268 (0.3) [MH+],
186 (13), 175 (74), 155 (77), 135 (100), 103 (31), 91 (63), 77 (13). 12:
1H NMR (200 MHz, CDCl3, 25 °C, TMS) δ ) 1.05 (d, J ) 6.8 Hz, 3 H),
2.26 (d, J ) 1.4 Hz, 3 H), 2.43-2.55 (m, 1 H), 2.66-2.89 (m, 2 H),
3.15-3.25 (m, 1 H), 3.28 (s, 3 H), 6.11 (dd, J ) 1.4, 10 Hz, 1 H), 7.18-
7.35 (m, 5 H); 13C NMR (50 MHz, CDCl3, 25 °C, TMS) δ ) 15.4, 27.7,
37.7, 39.0, 58.5, 85.9, 94.1, 126.0, 128.2, 129.3, 138.8, 143.7; IR (CCl4)
ν ) 3033, 2933, 1635, 1454, 1100 cm-1; [R]20 ) -48 (c ) 1, CHCl3).
D
S0022-3263(96)00500-2 CCC: $12.00 © 1996 American Chemical Society