Zobi and Stynes
801
Inorg. Chem. 20, 761 (1981); (c) C. Ercolani, M. Gardini, F.
Monacelli, G. Pennesi, and G. Rossi. Inorg. Chem. 22, 2584
(1983); (d) C. Ercolani, G. Rossi, and F. Monacelli. Inorg.
Chem. Acta, 44, L215 (1980).
[3]
2-(L)2 + 4L + 2H2Q → 2Fe(Pc)(L)2 +
Ru(TPP′)(L)2 + 2Q (where L = 4-MePy)
The rate constant for the reduction of 2 (7 × 10–6 s–1) was
found to be independent of the concentration or nature of the
reductant used and it is at least four orders of magnitude
slower than that of µ-oxo borylated dioxime systems (6) (see
Table 4). The reaction proceeds cleanly (isosbestic point at
688 nm) with no binuclear or other intermediates detected.
Mechanism A in Fig. 8 is proposed in which the rate deter-
mining step is the dissociation of a Fe(Pc) unit to generate a
binuclear species, which is subsequently reduced to the
monomeric RuII(TPP′) and FeII(Pc) complexes. In contrast,
mechanism B was proposed in DMG systems where reduc-
tion was found to show an inverse first-order dependence on
the axial ligand concentration implying a loss of one ligand
prior to the rate determining µ-oxo cleavage (6, 22). A fold-
ing back of the pentacoordinate FeN4 fragment in a bent ge-
ometry permits direct attack at the oxo site in these systems.
Mechanism B may be much more difficult in FePc-based
trinuclears as the Pc ring lacks the flexibility of the DMG
macrocycles. Thus, only a [L] independent dissociative path
is observed in the FePc systems.
6. I. Vernik and D.V. Stynes. Inorg. Chem. 37, 10 (1998).
7. (a) K.J. Berry, B. Moubaraki, K.S. Murray, P.J. Nichols, L.D.
Schultz, and B.O. West. Inorg. Chem. 34, 4123 (1995);
(b) L.D. Schultz, G.D. Fallon, B. Moubaraki, K.S. Murray, and
B.O. West. J. Chem. Soc. Chem. Commun. 971 (1992).
8. A.D. Alder, F.R. Longo, J.D. Finarelli, J. Goldmacher, J.
Assour, and L. Koskakoff. J. Org. Chem. 32, 476 (1967).
9. J.P. Collman, C.E. Barnes, P.J. Brothers, T.J. Collins, T.
Ozawa, J.C. Gallucci, and J.A. Ibers. J. Am. Chem. Soc. 106,
5151 (1984).
10. W. Leung and C.M. Che. J. Am. Chem. Soc. 111, 8812 (1989).
11. D.V. Stynes and B.R. James. J. Am. Chem. Soc. 96, 2733
(1974).
12. (a) R.J. Abraham, S.C.M. Fell, and K.M. Smith. Org. Magn.
Reson. 9, 367 (1977); (b) R.J. Abraham, G.R. Bedford, D.
McNeillie, and B. Wright. Org. Magn. Reson. 14, 418 (1980);
(c) R.J. Abraham, G.R. Bedford, B. Wright. Org. Magn.
Reson. 18, 45 (1982); (d) R.J. Abraham, C.J. Medforth, K.M.
Smith, D.A. Goff, and D.J. Simpson. J. Am. Chem. Soc. 109,
4786 (1987).
13. C. Ercolani, J. Jubb, G. Pennesi, U. Russo, and G. Trigante.
Inorg. Chem. 34, 2535 (1995).
14. K.J. Wynne. Inorg. Chem. 24, 1339 (1985).
15. M.T. Pinillos, A. Elduque, E. Martin, N. Navarro, J.F. Lahoz,
J.A. Lopez, and L. Oro. Inorg. Chem. 34, 111 (1995).
16. B.J. Hamstra, B. Cheng, and M.K. Ellison. Inorg. Chem. 38,
3554 (1999).
17. M.P. Donzello, C. Ercolani, K.M. Kadish, Z. Ou, and U.
Russo. Inorg. Chem. 37, 3682 (1998).
Acknowledgments
Financial support from NSERC (Canada) is gratefully ac-
knowledged. The authors are also thankful to Christos
Alexiou for his assistance in CV data collection, and Gianni
Manno of the Department of Mathematics at the King’s Col-
lege, London, U.K. for his suggestions regarding rcs calcula-
tions.
18. D.J. Liston, B.J. Kennedy, K.S. Murray, and B.O. West. Inorg.
Chem. 24, 1567 (1985).
19. L.A. Bottomley, C. Ercolani, J.-N. Gorce, G. Pennesi, and G.
Rossi. Inorg. Chem. 25, 2338 (1986).
References
1. (a) R.D. Holm. Chem. Rev. 87, 1401 (1987); (b) D.M. Kurtz.
Chem. Rev. 90, 585 (1990); (c) R.D. Holm, P. Kennepohl, and
E.I. Solomon. Chem. Rev. 96, 2239 (1996); (d) B.J. Waller and
J.D. Lipson. Chem. Rev. 96, 2625 (1996); (e) P. Norlund, B.-
M. Sjöberg, and H. Eklund. Nature (London), 345, 593 (1990);
(g) R.M. Buchanan, S. Chen, and J.F. Richardson. Inorg.
Chem. 33, 3208 (1994); (h) K. Neimann, R. Neumann, and A.
Ribion. Inorg. Chem. 38, 3575 (1999).
2. C. Ercolani and B. Floris. In Phthalocyanines. Properties and
applications. Vol. 2. Edited by C.C. Leznoff and A.B.P. Lever.
VCH Publishers, New York. 1993. pp. 1–42.
3. (a) R.D. Cannon and R.P. White. Prog. Inorg. Chem. 36, 195
(1988); (b) M.H. Chisholm, K. Folting, and E.M. Kober. Inorg.
Chem. 24, 241 (1985).
4. (a) E.N. Baski, R.L. Elliott, K.S. Murray, P.J. Nichols, and
B.O. West. Aust. J. Chem. 43, 707 (1990); (b) B.O. West.
Polyhedron, 8, 219 (1989); (c) D.J. Liston, B.J. Kennedy, K.S.
Murray, and B.O. West. Inorg. Chem. 24, 1561 (1985); (d) R.J.
Saxton, L.W. Olson, and L.J.J. Wilson. J. Chem. Soc. Chem.
Commun. 984 (1982).
20. (a) M. Hannak, A. Lange, M. Rein, R. Behnisch, G. Renz, and
A. Leverenz. Synth. Metal, 29, F1 (1989); (b) R. Behnisch and
M. Hannak. Synth. Metal, 36, 387 (1990); (c) W. Kalz, H.
Homborg, H. Kuppers, B.J. Kennedy, and K.S. Murray.
Naturforsch. B39b, 1478 (1984); (d) Y. Orihashi, H. Ohno, E.
Tsuchida, H. Matsuda, H. Nakanishi, and M. Kato. Chem.
Lett. 601 (1987); (e) Y. Orihashi, N. Nishikawa, H. Ohno, E.
Tsuchida, H. Matsuda, H. Nakanishi, and M. Kato. Bull.
Chem. Soc. Jpn. 60, 3731 (1987).
21. (a) M. Muller, B. Eckhard, T. Weyhermuller, and K.
Wieghardt. Chem. Commun. 705 (1997); (b) J.D. Cohen, S.
Payne, K.S. Hagen, and J. Sanders-Loehr. J. Am. Chem. Soc.
119, 2960 (1997); (c) U. Bossek, H. Hummel, T.
Weyhermuller, E. Bill, and K. Wieghardt. Angew. Chem. Int.
Ed. Engl. 34, 2642 (1995); (d) D.V. Stynes, H. Noglik, and
D.W. Thompson. Inorg. Chem. 30, 4567 (1991); (e) J.E. Early
and T. Fealey. Inorg. Chem. 25, 2015 (1986).
22. (a) I. Vernik and D.V. Stynes. Inorg. Chem. 35, 2006 (1996);
(b) J.M. Caroll and J.R. Norton. J. Am. Chem. Soc. 114, 8744
(1992).
5. (a) A. Yamamoto, L.K. Phillips, and M. Calvin. Inorg. Chem.
7, 847 (1968); (b) A.B.P. Lever, J.P. Wilshire, and K.S. Quan.
© 2001 NRC Canada