Scheme 2
intermediates, chiral tertiary a-hydroxy acid derivatives with
high diastereoselectivities.
Notes and references
1 (a) K. Soai and M. Ishizaki, J. Org. Chem., 1986, 51, 3290; (b) Y. H.
Kim, I. S. Byun and J. Y. Choi, Tetrahedron: Asymmetry, 1995, 6, 1025;
(c) Y. H. Kim and S. H. Kim, Tetrahedron Lett., 1995, 36, 6895; (d)
C. H. Senanayake, K. Fang, P. Grover, R. P. Bakale, C. P.
Vandenbossch and S. A. Wald, Tetrahedron Lett., 1999, 40, 819, and
references therein.
2 (a) S. Hanessian, Total Synthesis of Natural Products: The Chiron
Approach, Pergamon Press, New York, 1983, ch. 2; (b) D. W.
McPherson and F. F. Knapp, J. Org. Chem., 1996, 61, 8335; (c) Y.
Kanda and T. Fukuyama, J. Am. Chem. Soc., 1993, 115, 8451; (d)
A. V. R. Rao, J. S. Yadav and M. Valluri, Tetrahedron Lett., 1994, 35,
3613; (e) W. L. White, K. L. Ricciardelli and M. K. Chaguturu, US Pat.,
4704161.
3 T. Akiyama, K. Ishikawa and S. Ozaki, Synlett, 1994, 275; D. A. Evans,
M. C. Kozlowski, S. C. Burgey and D. W. C. MacMillan, J. Am. Chem.
Soc., 1997, 119, 7893; J. L. Wood, B. M. Stoltz, H. J. Dietrich, D. A.
Pflum and D. T. Petsch, J. Am. Chem. Soc., 1997, 119, 9641; P. I. Dosa
and G. C. Fu, J. Am. Chem. Soc., 1998, 120, 445.
4 F. J. Weiberth and S. S. Hall, J. Org. Chem., 1985, 50, 5308.
5 S. Hoff, L. Brandsma and J. F. Arens, Recl. Trav. Chim. Pays-Bas, 1968,
87, 916.
6 For recent reviews of the chemistry of alkoxyallenes, see: R. Zimmer,
Synthesis, 1993, 165; P. v. R. Schleyer, C. Lambert and E. U.
Würthwein, J. Org. Chem., 1993, 58, 6377.
7 (a) D. Gange and P. Magnus, J. Am. Chem. Soc., 1978, 100, 7746; (b)
S. W. Goldstein, L. E. Overman and M. H. Rabinowitz, J. Org. Chem.,
1992, 57, 1179; (c) S. Hormuth and H.-U. Reissig, J. Org. Chem., 1994,
59, 67; (d) W. Schade and H.-U. Reissig, Synlett, 1999, 632.
8 P. Rochet, J.-M. Vatèle and J. Goré, Synlett, 1993, 105; T. Arnold, B.
Orschel and H.-U. Reissig, Angew. Chem., Int. Ed. Engl., 1992, 31,
1033.
Fig. 1 X-Ray structure of 5g.
The purified products 4, 5 and 6 were identified by H, 13C
NMR,7b–d IR and MS. The ratios of diastereomers were
determined by HPLC using a chiral OD column. The absolute
configuration of 5g was determined by comparison of the
1
25
specific rotation of 8 ([a]D 240.2°, c = 1.7, acetone) with the
literature value13 ([a]D 241.0°, c = 10, acetone) and its
24
structure determined by X-ray analysis (Fig. 1).14 The ratios of
diastereomers were unaltered during the process. Compound 8
has been found in plant growth regulators2e and highly
enantiomeric excess synthesis of 8 has not been reported
previously.
Enol ethers of 2,5-dihydrofuran derivatives 6 were readily
hydrolyzed by HCl solution (H2O+1,4-dioxane = 10+1) to
provide the corresponding 3(2H)-dihydrofuranones 7 in good
yields (75–80%), which are interesting intermediates as ana-
logues of muscarone.15b Their structural element appears in
other biologically active compounds15 and their transformation
to certain deoxy sugar derivatives can be performed. The
indoline a-keto amides have a great advantage in terms of
cleavage of the amide bond to give chiral products and recover
the indoline chiral auxiliary.1b,c,16 The cleavage of the amide
bond of indoline amides is much easier than that of alkyl amides
such as proline amides. For instance, the chiral products 5g or
7b were readily hydrolyzed with 5% HCl in 1,4-dioxane under
reflux for 3 h to give the corresponding 2-hydroxy-2-methylbut-
3-ynoic acid 8 or 2-ethyl-3(2H)-dihydrofuranone-2-carboxylic
acid 9 in 94–98% yields, respectively, as shown in Scheme 1.
The chiral auxiliary was recovered in 95–98% yield without
loss of optical purity. Earlier work11d,e on asymmetric addition
of acetylide to a ketone (not a chiral auxiliary) gave one chiral
tertiary alcohol from a specific ketone leading to one com-
pound. Our method, however, provides a general methodology
to produce chiral tertiary a-hydroxy carboxylic acid acet-
ylenes.
9 S. Hoff, L. Brandsma and J. F. Arens, Recl. Trav. Chim. Pays-Bas, 1968,
87, 1179.
10 S. Hoff, L. Brandsma and J. F. Arens, Recl. Trav. Chim. Pays-Bas, 1969,
88, 609.
11 (a) T. Mukaiyama and K. Suzuki, Chem. Lett., 1980, 255; (b) G. M. R.
Tombo, E. Didier and B. Loubinoux, Synlett, 1990, 547; (c) E. J. Corey
and K. A. Cimprich, J. Am. Chem. Soc., 1994, 116, 3151; (d) A. S.
Thompson, E. G. Corley, M. F. Huntington and E. J. J. Grabowski,
Tetrahedron Lett., 1995, 36, 8937; (e) L. Tan, C. Chen, R. D. Tillyer, E.
J. J. Grabowski and P. J. Reider, Angew. Chem., Int. Ed., 1999, 38, 711;
(f) D. A. Evans, D. P. Halstead and B. D. Allison, Tetrahedron Lett.,
1999, 40, 4461; (g) Z. Li, V. Upadhyay, A. E. DeCamp, L. Di Michele
and P. J. Reider, Synthesis, 1999, 1453; (h) D. E. Frantz, R. Fässler and
E. M. Carreira, J. Am. Chem. Soc., 2000, 122, 1806.
12 K. C. Nicolaou and S. E. Webber, J. Am. Chem. Soc., 1984, 106, 5734;
E. J. Corey, K. Niimura, Y. Konishi, S. Hashimoto and Y. Hamada,
Tetrahedron Lett., 1986, 27, 2199; W. R. Roush and R. J. Sciotti, J. Am.
Chem. Soc., 1994, 116, 6457; D. Vourloumis, K. D. Kim, J. L. Petersen
and P. A. Magriotis, J. Org. Chem., 1996, 61, 4848.
13 D. Dugat, M. Verny and R. Vessière, Tetrahedron, 1971, 27, 1715.
14 Crystal data for 5g: C15H17NO3: Mr = 259.3, orthorhombic, space
group P212121, a = 10.300(2), b = 10.536(2), c = 25.810(6) Å, V =
2800.9(11) Å3, Z = 8, Dc = 1.230 g cm23, F(000) = 1104, m(Mo-Ka)
= 0.086 mm21, R1 = 0.0333, wR2 = 0.0404 for 2661 reflections (Fo
>
Scheme 1
4s(Fo)). (Note two independent molecules which have the same
configuration are contained in the unit cell of the crystal of 5g.) The
absolute configuration could not be determined (Flack parameter: –0.43
b100355k/ for crystallographic data in .cif or other electronic format.
15 (a) J. E. Semple and M. M. Joullié, Heterocycles, 1980, 14, 1825; (b) M.
DeAmici, C. Dallanoce, C. DeMicheli, E. Grana, A. Barbieri, H.
Ladinsky, G. Schiavi and T. Zonta, J. Med. Chem., 1992, 35, 1915.
16 S. M. Kim, I. S. Byun and Y. H. Kim, Angew. Chem., Int. Ed., 2000, 39,
728.
Conversion of the hydroxyalkylated allenes into the a,b-
unsaturated ketones under acidic conditions is also a useful
reaction.9 It is noteworthy that treatment of 4b with 5% HCl
provided enone 10 within 10 min at 25 °C as shown in Scheme
2. The ratio of diastereomers was also unaltered during
hydrolysis. The enone moiety may be an interesting precursor
for Michael-type additions or cycloadditions.17
In summary, it has been demonstrated that the reaction of a-
keto amides derived from (S)-indoline-2-carboxylic acid with
lithiated methoxyallene or lithium acetylide can provide useful
17 For examples: W. Choy, L. A. Reed and S. Masamune, J. Org. Chem.,
1983, 48, 1139.
Chem. Commun., 2001, 996–997
997