Organic Letters
Letter
catalyzed [2,3]-sigmatropic rearrangements of propargylic sulfonium
and selenonium salts. Tetrahedron Lett. 2001, 42, 2911−2914.
(6) Nishibayashi, Y.; Ohe, K.; Uemura, S. The first example of
enantioselective carbenoid addition to organochalcogen atoms:
application to [2,3]sigmatropic rearrangement of allylic chalcogen
ylides. J. Chem. Soc., Chem. Commun. 1995, 1245−1246.
Rearrangement of Sulfur Ylides Generated from Copper(I)
Carbenoids and Allyl Sulfides. J. Org. Chem. 2002, 67, 5621−5625.
(c) Liang, Y.; Zhou, H.; Yu, Z.-X. Why Is Copper(I) More
Competent Than Dirhodium(II) Complex in Catalytic Asymmetric
OH insertion Reactions? A Computational Study of the Metal
Carbenoid OH insertion into Water. J. Am. Chem. Soc. 2009, 131,
17783−17785.
(7) (a) Jones, A. C.; May, J. A.; Sarpong, R.; Stoltz, B. M. Toward a
Symphony of Reactivity: Cascades Involving Catalysis and Sigma-
tropic Rearrangements. Angew. Chem., Int. Ed. 2014, 53, 2556−2591.
(b) Hoffmann, R.; Woodward, R. B. Conservation of orbital
symmetry. Acc. Chem. Res. 1968, 1, 17−22. (c) Ford, A.; Miel, H.;
Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Modern
Organic Synthesis with α-Diazocarbonyl Compounds. Chem. Rev.
2015, 115, 9981−10080. (d) Zhang, Y.; Wang, J. Catalytic [2,3]-
sigmatropic rearrangement of sulfur ylide derived from metal carbene.
Coord. Chem. Rev. 2010, 254, 941−953 and references cited therein .
(8) Selected articles on sigmatropic rearrangement of sulfonium
ylides: (a) Sheng, Z.; Zhang, Z.; Chu, C.; Zhang, Y.; Wang, J.
Transition metal-catalyzed [2,3]-sigmatropic rearrangements of
ylides: An update of the most recent advances. Tetrahedron 2017,
73, 4011−4022. (b) Neuhaus, J. D.; Oost, R.; Merad, J.; Maulide, N.
Sulfur-Based Ylides in Transition-Metal-Catalysed Processes. Top.
Curr. Chem. 2018, 376, 15. (c) Hock, K. J.; Koenigs, R. M.
Enantioselective [2,3]-Sigmatropic Rearrangements: Metal-Bound or
Free Ylides as Reaction Intermediates? Angew. Chem., Int. Ed. 2017,
56, 13566−13568. (d) Bach, R.; Harthong, S.; Lacour, J. Nitrogen-
and Sulfur-Based Stevens and Related Rearrangements. In Compre-
hensive Organic Synthesis II; Knochel, P., Ed.; Elsevier, 2014; Vol. 3, pp
992−1037. (e) Kirmse, W.; Kapps, M. Reaktionen des Diazomethans
(13) The crude NMR spectrum of the reaction mixture of 13 shows
minor amounts of the E-configured isomer (>20:1 dr).
(14) Chen, S.; Wang, J. Palladium-catalyzed reaction of allyl halides
with α-diazocarbonyl compounds. Chem. Commun. 2008, 4198−4200.
(15) Hommelsheim, R.; Yang, Z.; Guo, Y.; Empel, C.; Koenigs, R.
M. Blue-Light-Induced Carbene-Transfer Reactions of Diazoalkanes.
Angew. Chem., Int. Ed. 2019, 58, 1203−1207.
̈
mit Diallylsulfid und Allylathern unter Kupfersalz-Katalyse. Chem. Ber.
1968, 101, 994−1003. (f) Doyle, M. P.; Tamblyn, W. H.; Bagheri, V.
J. Highly effective catalytic methods for ylide generation from diazo
compounds. Mechanism of the rhodium- and copper-catalyzed
reactions with allylic compounds. J. Org. Chem. 1981, 46, 5094−
5102. (g) Hock, K. J.; Mertens, L.; Hommelsheim, R.; Spitzner, R.;
Koenigs, R. M. Enabling iron catalyzed Doyle−Kirmse rearrangement
reactions with in situ generated diazo compounds. Chem. Commun.
2017, 53, 6577−6580. (h) Liao, M.; Peng, L.; Wang, J. Rh(II)-
Catalyzed Sommelet−Hauser Rearrangement. Org. Lett. 2008, 10,
693−696. (i) Ma, M.; Peng, L.; Li, C.; Zhang, X.; Wang, J. Highly
Stereoselective [2,3]-Sigmatropic Rearrangement of Sulfur Ylide
Generated through Cu(I) Carbene and Sulfides. J. Am. Chem. Soc.
2005, 127, 15016−15017.
(9) Selected references on sigmatropic rearrangement reactions of
oxonium ylides: (a) Pirrung, M. C.; Werner, J. A. Intramolecular
generation and [2,3]-sigmatropic rearrangement of oxonium ylides. J.
Am. Chem. Soc. 1986, 108, 6060−6062. (b) Roskamp, E. J.; Johnson,
C. R. Generation and rearrangements of oxonium ylides. J. Am. Chem.
Soc. 1986, 108, 6062−6063. (c) Li, Z.; Davies, H. M. L.
Enantioselective C−C Bond Formation by Rhodium-Catalyzed
Tandem Ylide Formation/[2,3]-Sigmatropic Rearrangement between
Donor/Acceptor Carbenoids and Allylic Alcohols. J. Am. Chem. Soc.
2010, 132, 396−401. (d) Li, Z.; Parr, B. T.; Davies, H. M. L. Highly
Stereoselective C−C Bond Formation by Rhodium-Catalyzed
Tandem Ylide Formation/[2,3]-Sigmatropic Rearrangement between
Donor/Acceptor Carbenoids and Chiral Allylic Alcohols. J. Am. Chem.
Soc. 2012, 134, 10942−10946. (e) Rao, S.; Prabhu, K. R. Gold-
Catalyzed [2,3]-Sigmatropic Rearrangement: Reaction of Aryl Allyl
Alcohols with Diazo Compounds. Org. Lett. 2017, 19, 846−849.
(10) Selected referenes on sigmatropic rearrangement reactions of
iodonium ylides: Xu, B.; Tambar, U. K. Copper-Catalyzed Enantio-,
Diastereo-, and Regioselective [2,3]-Rearrangements of Iodonium
Ylides. Angew. Chem., Int. Ed. 2017, 56, 9868−9871.
(12) (a) Zhang, Z.; Sheng, Z.; Yu, W.; Wu, G.; Zhang, R.; Chu, W.-
D.; Zhang, Y.; Wang, J. Catalytic asymmetric trifluoromethylthiolation
via enantioselective [2,3]-sigmatropic rearrangement of sulfonium
ylides. Nat. Chem. 2017, 9, 970−976. (b) Zhang, X.; Qu, Z.; Ma, Z.;
Shi, W.; Jin, X.; Wang, J. Catalytic Asymmetric [2,3]-Sigmatropic
E
Org. Lett. XXXX, XXX, XXX−XXX