10.1002/cctc.201900221
ChemCatChem
FULL PAPER
Ramström, J. Mol. Catal. B: Enzym. 2015, 122, 29; h) Y. Zhang, Y. Zhang,
S. Xie, M. Yan, O. Ramström, Catal. Commun. 2016, 82, 11.
Conclusions
[4] a) G. P. Speranza, W. J. Peppel, J. Org. Chem. 1958, 23, 1922; b) M.
Fujiwara, A. Baba, Y. Tomohisa, H. Matsuda, Chem. Lett. 1986, 1963; c) C.
Larksarp, H. Alper, J. Am. Chem. Soc. 1997, 119, 3709; d) T. Baronsky, C.
Beattie, R. W. Harrington, R. Irfan, M. North, J. G. Osende, C. Young, ACS.
Catal. 2013, 3, 790; e) R. L. Paddock, D. Adhikari, R. L. Lord, M. H. Baik, S.
T. Nguyen, Chem. Commun. 2014, 50, 15187; f) Y. Toda, S. Gomyou, S.
Tanaka, Y. Komiyama, A. Kikuchi, H. Suga, Org. Lett. 2017, 19, 5786.
[5] a) M. Feroci, M. Orsini, G. Sotgiu, L. Rossi, A. Inesi, J. Org. Chem. 2005,
70, 7795; b) T. Ishida, R. Kobayashi, T. Yamada, Org. Lett. 2014, 16,
2430; c) J. Hu, J. Ma, Q. Zhu, Z. Zhang, C. Wu, B. Han, Angew. Chem. Int.
Ed. 2015, 54, 5399; d) Z. Chang, X. Jing, C. He, X. Liu, C. Duan, ACS
Catal. 2018, 8, 1384; e) A. W. Miller, S. T. Nguyen, Org. Lett. 2004, 6,
2301; f) M. T. Hancock, A. R. Pinhas, Tetrahedron Lett. 2003, 44, 5457; g)
Y. Wu, L. He, Y. Du, J. Wang, C. Miao, W. Li, Tetrahedron 2009, 65, 6204;
h) R. A. Watile, D. B. Bagal, K. M. Deshmukh, K. P. Dhake, B. M. Bhanage,
J. Mol. Catal. A 2011, 351, 196.
In summary, we have developed a simple and highly practical
rare-earth-metal-catalyzed multicomponent approach for the
synthesis of oxazolidinones. Starting materials, i.e., epoxides,
carbonate, and amines, are all easily available, and substrate
scope includes a wide range of aromatic and aliphatic amines,
as well as mono-substituted epoxides. 47 examples of variously
substituted oxazolidinones were obtained in 13-97% yields,
demonstrating wide applicability of this method. Scope of
disubstituted epoxides is limited, which requires further study.
Preliminary mechanistic studies reveal that two possible
pathways, i.e., through reaction of β-amino-alcohols and DMC,
or through reaction of amides with epoxides, give access to
oxazolidinones. Study on rare-earth metal catalyzed atom-
economic transformations is on-going in our laboratory.
[6] a) G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, P. Melchiorre, L. Sambri,
Org. Lett. 2005, 7, 1983; b) J. Shang, S. Liu, L. Lu, X. Ma, Y. He, Y. Deng,
Catal. Commun. 2012, 28, 13; c) V. Laserna, W. Guo, A. K. Kleij, Adv.
Synth. Catal. 2015, 357, 2849; d) J. Shang, Z. Li, C. Su, Y. Guo, Y. Deng,
RSC Adv. 2015, 5, 71765; e) E. H. M. Elageed, B. Chen, B. Wang, Y.
Zhang, S. Wu, X. Liu, G. Gao, Eur. J. Org. Chem. 2016, 3650.
Experimental Section
General procedure of three component reaction
[7] a) B. Wang, E. H. M. Elageed, D. Zhang, S. Yang, S. Wu, G. Zhang, G.
Gao, ChemCatChem 2014, 6, 278; b) Y. Song, C. Cheng, H. Jing, Chem.
Eur. J. 2014, 20, 12894; c) B. Wang, Z. Luo, E. H. M. Elageed, S. Wu, Y.
Zhang, X. Wu, F. Xia, G. Zhang, G. Gao, ChemCatChem 2016, 8, 830; d)
B. Xu, P. Wang, M. Lv, D. Yuan, Y. Yao, ChemCatChem 2016, 8, 2466; e)
M. Lv, P. Wang, D. Yuan, Y. Yao, ChemCatChem 2017, 9, 4451. f) U. R.
Seo, Y. K. Chung, Green Chem. 2017, 19, 803; g) S. M. Sadeghzadeh, R.
Zhiani, S. Emrani, Catal. Lett. 2018, 148, 119; h) S. M. Sadeghzadeh, R.
Zhiani, M. Moradi, ChemistrySelect 2018, 3, 3516.
Complex 1 (R1 = Ph: 17.6 mg, 0.02 mmol; R1 = Bn: 35.2 mg, 0.04 mmol),
amines (2 mmol), epoxides (1 mmol), and DMC (0.17 mL, 2 mmol) were
introduced into a 5 mL glass vial equipped with a stir bar in a glovebox,
and heated at 80 ºC after 12 h reaction. The reaction mixture was purified
by column chromatography using ethyl acetate/petroleum ether = 1/3-1/0,
and the resulting oxazolidinone was characterized by 1H and 13C NMR
spectroscopy and HR MS.
[8] a) T. Niemi, J.E. Perea-Buceta, I. Fernández, O.M. Hiltunen, V. Salo, S.
Rautiainen, M. T. Räisänen, T. Repo, Chem. Eur. J. 2016, 22, 10355; b) C.
Mei, Y. Zhao, Q. Chen, C. Cao, G. Pang, Y. Shi, ChemCatChem 2018, 10,
3057.
Acknowledgements
[9] a) R. Schwesinger, Chimia 1985, 39, 269; b) R. Schwesinger, H.
Schlemper, Angew. Chem., Int. Ed. 1987, 26, 1167; c) C. G. McPherson, A.
K. Cooper, A. Bubliauskas, P. Mulrainey, C. Jamieson, A. J. B. Watson,
Org. Lett. 2017, 19, 6736. (BEMP: tert-butylimino-2-diethylamino-1,3-
dimethylperhydro-1,3,2-diazaphosphorine).
We gratefully acknowledge financial support from the National
Natural Science Foundation of China (Grant 21871198), the
Project of Scientific and Technologic Infrastructure of Suzhou
(SZS201708), and PAPD.
[10] a) H. Sasai, T. Suzuki, N. Itoh, K. Tanaka, T. Date, K. Okamura, M.
Shibasaki, J. Am. Chem. Soc. 1993, 115, 10372; b) N. Yoshikawa, Y. M. A.
Yamada, J. Das, H. Sasai, M. Shibasaki, J. Am. Chem. Soc. 1999, 121,
4168; c) L. Zhang, S. Wang, E. Sheng, S. Zhou, Green Chem. 2005, 7,
683.
Keywords: oxazolidinones • rare earth amides •
multicomponent reactions
[1] a) D. J. Ager, I. Prakash, D. R. Schaad, Aldrichimica Acta. 1997, 30, 3; b)
W. R. Roush, R. A. James, Aust. J. Chem. 2002, 55, 141.
[11] a) Q. Qian, Y. Tan, B. Zhao, T. Feng, Q. Shen, Y. Yao, Org. Lett. 2014, 16,
4516; b) C. Zeng, D. Yuan, B. Zhao, Y. Yao, Org. Lett. 2015, 17, 2242.
[12] a) Y. Lee, J. Choi, H. Kim, Org. Lett. 2018, 20, 5036; b) M. Selva, M.
Fabris, Green Chem. 2009, 11, 1161; c) T. Niemi, I. Fernández, B.
Steadman, J. K. Mannistoa, T. Repo, Chem. Commun. 2018, 54, 3166.
[13] a) A. Baba, K. Seki, H. Matsuda, J. Org. Chem. 1991, 56, 2684; b) G.
Sekar, V. K. Singh, J. Org. Chem. 1999, 64, 287.
[2] a) C. W. Ford, J. C. Hamel, D. Stapert, J. K. Moerman, D. K. Hutchinson, M.
R. Barbachyn, G. E. Zurenko, Trends Microbiol. 1997, 5, 196; b) S. Cacchi,
G. Fabrizi, A. Goggiamani, G. Zappia, Org. Lett. 2001, 3, 2539; c) G. E.
Zurenko, J. K. Gibson, D. L. Shinabarger, P. A. Aristoff, C. W. Ford, W. G.
Tarpley, Curr. Opin. Pharmacol. 2001, 1, 470; d) B. Mallesham, B. M.
Rajesh, P. R. Reddy, D. Srinivas, S. Trehan, Org. Lett. 2003, 5, 963; e) A.
Ali, G. S. K. K. Reddy, H. Cao, S. G. Anjum, M. N. L. Nalam, C. A. Schiffer,
T. M. Rana, J. Med. Chem. 2006, 49, 7342.
[14] a) N. Nagaraju, G. Kuriakose, Green Chem. 2016, 4, 269; b) A. Ying, H.
Hou, S. Liu, G. Chen, J. Yang, S. Xu, ACS Sustainable Chem. Eng. 2016,
4, 625; c) C. Han, J. A. Porco, Jr, Org. Lett. 2007, 9, 1517; d) S. Kumar, S.
L. Jain, Dalton Trans. 2013, 42, 15214; e) P. Wang, Y. Fei, Q. Li, Y. Deng,
Green Chem. 2016, 18, 6681; f) R. Zeng, L. Bao, H. Sheng, L. Sun, M.
Chen, Y. Feng, M. Zhu, RSC Adv. 2016, 6, 78576.
[3] a) S. I. Fujita, H. Kanamaru, H. Senboku, M. Arai, Int. J. Mol. Sci. 2006, 7,
438; b) K. I. Tominaga, Y. Sasaki, Synlett. 2002, 2, 0307; c) S. R. Jagtapa,
Y. P. Patila, S. Fujitab, M. Araib, B. M. Bhanagea, Appl. Catal. A 2008, 341,
133; d) S. Pulla, V. Unnikrishnan, P. Ramidi, S. Z. Sullivan, A. Ghosh, J. L.
Dallas, P. Munshi, J. Mol. Catal. A 2011, 338, 33; e) R. Morales-Nava, M.
Fernández-Zertuche, M. Ordóñez, Molecules 2011, 16, 8803; f) N.
Caldwell, P. S. Campbell, C. Jamieson, F. Potjewyd, I. Simpson, A. J. B.
Watson, J. Org. Chem. 2014, 79, 9347; g) Y. Zhang, Y. Zhang, Y. Ren, O.
[15] a) W. R. Perrault, B. A. Pearlman, D. B. Godrej, A. Jeganathan, K.
Yamagata, Org. Process Res. Dev. 2003, 7, 533; b) A. P. Piccionello, P.
Pierro, A. Accardo, S. Buscemi, A. Pace, RSC Adv. 2013, 3, 24946.
This article is protected by copyright. All rights reserved.