Full Paper
Angew. Chem. 2004, 116, 6156; c) K. Hult, P. Berglund, Trends Biotechnol.
2007, 25, 231–238; d) I. Nobeli, A. D. Favia, J. M. Thornton, Nat. Biotech-
nol. 2009, 27, 157–167.
NMR analysis by comparing the CH signal adjacent to the hydroxyl
group (see the Supporting Information for further details).[24]
General Procedure for the ChCl:Gly (1:2) DES Preparation:
Choline chloride (50.0 mmol, 6.98 g) and glycerol (100.0 mmol,
7.30 mL) were mixed and stirred at 80 °C until a clear solution was
obtained (30 min). After cooling to room temperature, the formed
DES could be used directly in lipase-catalysed reaction without fur-
ther purification. For the preparation of ChCl:Gly (1:1.5) the protocol
was the same but using 75.0 mmol of glycerol (5.48 mL).
[2]
[3]
a) E. Busto, V. Gotor-Fernández, V. Gotor, Chem. Soc. Rev. 2010, 39, 4504–
4523; b) M. Kapoor, M. N. Gupta, Process Biochem. 2012, 47, 555–569; c)
M. López-Iglesias, V. Gotor-Fernández, Chem. Rec. 2015, 15, 743–759.
a) U. T. Bornscheuer, R. J. Kazlauskas, Hydrolases in Organic Synthesis:
Regio- and Stereoselective Biotransformations, 2nd ed., Wiley-VCH, Wein-
heim, Germany, 2005; b) V. Gotor-Fernández, V. Gotor, Curr. Org. Chem.
2006, 10, 1125–1143; c) V. Gotor-Fernández, R. Brieva, V. Gotor, J. Mol.
Catal. B 2006, 40, 111–120; d) A. Ghanem, Tetrahedron 2007, 63, 1721–
1754.
a) Q. Wu, B.-K. Liu, X.-F. Lin, Curr. Org. Chem. 2010, 14, 1966–1988; b)
M. S. Humble, P. Berglund, Eur. J. Org. Chem. 2011, 3391–3401; c) Z.
Guan, L.-Y. Li, Y.-H. He, RSC Adv. 2015, 5, 16801–16814.
a) M. Hayyan, M. A. Hashim, A. Hayyan, M. A. Al-Saadi, I. M. AlNashef,
M. E. S. Mirghani, O. K. Saheed, Chemosphere 2013, 90, 2193–2195; b) M.
Hayyan, M. A. Hashim, M. A. Al-Saadi, A. Hayyan, I. M. AlNashef, M. E. S.
Mirghani, Chemosphere 2013, 93, 455–459; c) I. Juneidi, M. Hayyan, M. A.
Hashim, RSC Adv. 2015, 5, 83636–83647.
General Procedure for the Aldol Reaction between 4-Nitro-
benzaldehyde and Acetone in DES: A mixture of porcine pancreas
lipase (PPL, 151 mg), 4-nitrobenzaldehyde (1a, 151 mg, 1.0 mmol)
and acetone (2, 368 μL, 5.0 mmol) in choline chloride/glycerol
(1:2 mol/mol, 1 mL) containing 5 % water (50 μL) was shaken at
60 °C and 250 rpm. After 24 h, the mixture was extracted with ethyl
acetate (5 × 5 mL). The combined organic layers were washed with
brine (2 × 10 mL), dried with Na2SO4, filtered, and the solvent was
evaporated under reduced pressure. The mixture of aldol products
was isolated as an orange solid, and the composition was analysed
[4]
[5]
[6]
[7]
a) Q. Zhang, K. D. O. Vigier, S. Royer, F. Jérôme, Chem. Soc. Rev. 2012, 41,
7108–7146; b) E. L. Smith, A. P. Abbott, K. S. Ryder, Chem. Rev. 2014, 114,
11060–11082; c) J. I. García, H. García-Marín, E. Pires, Green Chem. 2014,
16, 1007–1033.
A. P. Abbott, E. I. Ahmed, R. C. Harris, K. S. Ryder, Green Chem. 2014, 16,
4156–4161.
1
by H NMR analysis.
General Procedure for the Aldol Reaction between Benzalde-
hydes and Acetone in DES: A mixture of porcine pancreas lipase
(PPL, 151 mg), the corresponding aldehyde (1a–e, 1.0 mmol), and
acetone (2, 368 μL, 5.0 mmol) in choline chloride/glycerol (1:2 mol/
mol, 1 mL) containing 5 % water (50 μL) was shaken at 60 °C and
250 rpm. After 24 h, the mixture was extracted with ethyl acetate
(5 × 5 mL). The combined organic layers were washed with brine
(2 × 10 mL), dried with Na2SO4, filtered, and the solvent was evapo-
rated under reduced pressure. The mixture of aldol products was
[8]
[9]
[10]
[11]
[12]
D. V. Wagle, H. Zhao, G. A. Baker, Acc. Chem. Res. 2014, 47, 2299–2308.
S. Cherukuvada, A. Nangia, Chem. Commun. 2014, 50, 906–923.
F. Pena-Pereira, J. Namieśnik, ChemSusChem 2014, 7, 1784–1800.
P. Liu, J.-W. Hao, L.-P. Mo, Z.-H. Zhang, RSC Adv. 2015, 5, 48675–48704.
a) J. García-Álvarez, Eur. J. Inorg. Chem. 2015, 5147–5157; b) J. García-
Álvarez, E. Hevia, V. Capriati, Eur. J. Org. Chem. 2015, 6779–6799.
M. K. Potdar, G. F. Kelso, L. Schwarz, C. Zhang, M. T. W. Hearn, Molecules
2015, 20, 16788.
a) J. T. Gorke, F. Srienc, R. J. Kazlauskas, Chem. Commun. 2008, 1235–
1237; b) D. Lindberg, M. F. Revenga, M. Widersten, J. Biotechnol. 2010,
147, 169–171; c) H. Zhao, G. A. Baker, S. Holmes, Org. Biomol. Chem. 2011,
9, 1908–1916; d) H. Zhao, G. A. Baker, S. Holmes, J. Mol. Catal. B 2011,
72, 163–167; e) E. Durand, J. Lecomte, B. Baréa, G. Piombo, E. Dubreucq,
P. Villeneuve, Process Biochem. 2012, 47, 2081–2089; f) H. Zhao, C. Zhang,
T. D. Crittle, J. Mol. Catal. B 2013, 85–86, 243–247; g) Z. Maugeri, W.
Leitner, P. Domínguez de María, Eur. J. Org. Chem. 2013, 4223–4228; h)
E. Durand, J. Lecomte, B. Baréa, E. Dubreucq, R. Lortie, P. Villeneuve, Green
Chem. 2013, 15, 2275–2282; i) E. Fernández-Álvaro, J. Esquivias, M. Pérez-
Sánchez, P. Domínguez de María, M. J. Remuiñán-Blanco, J. Mol. Catal. B
2014, 100, 1–6; j) A. Petrenz, P. Domínguez de María, A. Ramanathan, U.
Hanefeld, M. B. Ansorge-Schumacher, S. Kara, J. Mol. Catal. B 2015, 114,
42–49; k) M. C. Bubalo, A. J. Tušek, M. Vinković, K. Radošević, V. G. Srček,
I. R. Redovniković, J. Mol. Catal. B 2015, 122, 188–198.
[13]
[14]
1
isolated, and the composition was analysed by H NMR analysis.
General Procedure for the Aldol Reaction between Benzalde-
hydes and Cyclic Aliphatic Ketones in DES: A mixture of porcine
pancreas lipase (PPL, 151 mg), 4-nitrobenzaldehyde (1a–e,
1.0 mmol), and cyclopentanone (5, 107 μL, 2.0 mmol) or cyclohex-
anone (6, 207 μL, 2.0 mmol) in choline chloride/glycerol (1:2 mol/
mol, 1 mL) containing 5 % water (50 μL) was shaken at 60 °C and
250 rpm. After 24 h, the mixture was extracted with ethyl acetate
(5 × 5 mL). The combined organic layers were washed with brine
(2 × 10 mL), dried with Na2SO4, filtered, and the solvent was evapo-
rated under reduced pressure. The mixture of aldol products was
1
isolated, and the composition was analysed by H NMR analysis.
[15]
a) K. Fujita, N. Nakamura, K. Igarashi, M. Samejima, H. Ohno, Green Chem.
2009, 11, 351–354; b) Z. Maugeri, P. Domínguez de María, ChemCatChem
2014, 6, 1535–1537; c) P. Xu, J. Cheng, W.-Y. Lou, M.-H. Zong, RSC Adv.
2015, 5, 6357–6364; d) C. R. Müller, I. Lavandera, V. Gotor-Fernández, P.
Domínguez de María, ChemCatChem 2015, 7, 2654–2659.
a) Z. Maugeri, P. Domínguez de María, J. Mol. Catal. B 2014, 107, 120–
123; b) B.-P. Wu, Q. Wen, H. Xu, Z. Yang, J. Mol. Catal. B 2014, 101, 101–
107.
a) C. R. Müller, I. Meiners, P. Domínguez de María, RSC Adv. 2014, 4,
46097–46101; b) C. R. Müller, A. Rosen, P. Domínguez de María, Sustaina-
ble Chem. Processes 2015, 3, 12.
B. N. Borse, V. S. Borude, S. R. Shukla, Curr. Chem. Lett. 2012, 1, 59–68.
a) C. Branneby, P. Carlqvist, A. Magnusson, K. Hult, T. Brinck, P. Berglund,
J. Am. Chem. Soc. 2003, 125, 874–875; b) C. Branneby, P. Carlqvist, K.
Hult, T. Brinck, P. Berglund, J. Mol. Catal. B 2004, 31, 123–128; c) A. B.
Majumder, N. G. Ramesh, M.-N. Gupta, Tetrahedron Lett. 2009, 50, 5190–
5193.
Acknowledgments
Financial support to this work was provided by the Spanish
Ministerio de Economía y Competitividad (MEC) (CTQ2013-
44153-P) and the Gobierno del Principado de Asturias (FC-15-
GRUPIN14-002). The authors thank Novo Nordisk Co., Denmark
for the generous gift of CAL-B (Novozyme 435). D. G.-M. thanks
the Fundación para el fomento en Asturias de la investigación
científica aplicada y tecnología (FICYT) for a predoctoral fellow-
ship.
[16]
[17]
[18]
[19]
Keywords: Aldol reactions · Biocatalytic promiscuity · Enzyme
catalysis · Biotransformations · Deep eutectic solvents
[20]
[21]
M. López-Iglesias, E. Busto, V. Gotor-Fernández, V. Gotor, Adv. Synth. Catal.
2011, 353, 2345–2353.
a) C. Li, X.-W. Feng, N. Wang, Y.-J. Zhou, X.-Q. Yu, Green Chem. 2008, 10,
616–618; b) Z. Guan, J.-P. Fu, Y.-H. He, Tetrahedron Lett. 2012, 53, 4959–
[1] a) P. J. O'Brien, D. Herschlag, Chem. Biol. 1999, 6, R91–R105; b) U. T.
Bornscheuer, R. J. Kazlauskas, Angew. Chem. Int. Ed. 2004, 43, 6032–6040;
Eur. J. Org. Chem. 2016, 1513–1519
1518
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim