Full Paper
[3] a) M. E. Cain, M. B. Evans, D. F. Lee, J. Chem. Soc. 1962, 1694–1699; b)
A. W. Herriott, D. Picker, J. Am. Chem. Soc. 1975, 97, 2345–2349; c) Y.
Guindon, R. Frenette, R. Fortin, J. Rokach, J. Org. Chem. 1983, 48, 1357–
1359; d) M. Ouertani, J. Collin, H. B. Kagan, Tetrahedron 1985, 41, 3689–
3693; e) B. M. Trost, T. S. Scanlan, Tetrahedron Lett. 1986, 27, 4141–4144;
f) P. C. Bulman Page, S. S. Klair, M. P. Brown, M. M. Harding, C. S. Smith,
S. J. Maginn, S. Mulley, Tetrahedron Lett. 1988, 29, 4477–4480; g) L. S.
Richter, J. C. Marsters, T. R. Gadek, Tetrahedron Lett. 1994, 35, 1631–1634;
h) C. Goux, P. Lhoste, D. Sinou, Tetrahedron Lett. 1992, 33, 8099–8102; i)
J. Yin, C. Pidgeon, Tetrahedron Lett. 1997, 38, 5953–5954; j) T. Kondo, Y.
Morisaki, S. Uenoyama, K. Wada, T.-A. Mitsudo, J. Am. Chem. Soc. 1999,
121, 8657–8658; k) A. Kawada, K. Yasuda, H. Abe, T. Harayama, Chem.
Pharm. Bull. 2002, 50, 380–383; l) Y. Inada, Y. Nishibayashi, M. Hidai, S.
Uemura, J. Am. Chem. Soc. 2002, 124, 15172–15173; m) B. C. Ranu, R.
Jana, Adv. Synth. Catal. 2005, 347, 1811–1818; n) Z.-P. Zhan, J.-L. Yu, H.-
J. Liu, Y.-Y. Cui, R.-F. Yang, W.-Z. Yang, J.-P. Li, J. Org. Chem. 2006, 71,
8298–8301; o) H. Firouzabadi, N. Iranpoor, M. Jafarpour, Tetrahedron Lett.
2006, 47, 93–97; p) Y. Yatsumonji, Y. Ishida, A. Tsubouchi, T. Takeda, Org.
Lett. 2007, 9, 4603–4606; q) A. B. Zaitsev, H. F. Caldwell, P. S. Pregosin,
L. F. Veiros, Chem. Eur. J. 2009, 15, 6468–6477; r) X. Han, J. Wu, Org.
Lett. 2010, 12, 5780–5782; s) S. Tanaka, P. Kanti Pradhan, Y. Maegawa, M.
Kitamura, Chem. Commun. 2010, 46, 3996–3998; t) A. Saha, B. C. Ranu,
Tetrahedron Lett. 2010, 51, 1902–1905; u) K. Bahrami, M. Mehdi Khodaei,
N. Khodadoustan, Synlett 2011, 2206–2210; v) P. Nath Chatterjee, S. Roy,
Tetrahedron 2012, 68, 3776–3785; w) S. Biswas, J. S. M. Samec, Chem.
Asian J. 2013, 8, 974–981.
[4] a) M. Kosugi, T. Shimizu, T. Migita, Chem. Lett. 1978, 7, 13–14; b) H.
Suzuki, H. Abe, A. Osuka, Chem. Lett. 1980, 9, 1363–1364; c) H. J. Cristau,
B. Chabaud, A. Chene, H. Christol, Synthesis 1981, 892–894; d) N. Zheng,
J. C. McWilliams, F. J. Fleitz, J. D. Armstrong III, R. P. Volante, J. Org. Chem.
1998, 63, 9606–9607; e) G. Y. Li, G. Zheng, A. F. Noonan, J. Org. Chem.
2001, 66, 8677–8681; f) F. Y. Kwong, S. L. Buchwald, Org. Lett. 2002, 4,
3517–3520; g) C. G. Bates, R. K. Gujadhur, D. Venkataraman, Org. Lett.
2002, 4, 2803–2806; h) M. Murata, S. L. Buchwald, Tetrahedron 2004, 60,
7397–7403; i) T. Itoh, T. Mase, Org. Lett. 2004, 6, 4587–4590; j) C. G. Bates,
P. Saejueng, M. Q. Doherty, D. Venkataraman, Org. Lett. 2004, 6, 5005–
5008; k) C. Mispelaere-Canivet, J.-F. Spindler, S. Perrio, P. Beslin, Tetrahe-
dron 2005, 61, 5253–5259; l) M. A. Fernández-Rodríguez, Q. Shen, J. F.
Hartwig, J. Am. Chem. Soc. 2006, 128, 2180–2181; m) M. A. Fernández-
Rodríguez, Q. Shen, J. F. Hartwig, Chem. Eur. J. 2006, 12, 7782–7796; n)
Y.-C. Wong, T. T. Jayanth, C.-H. Cheng, Org. Lett. 2006, 8, 5613–5616; o)
Y.-J. Chen, H.-H. Chen, Org. Lett. 2006, 8, 5609–5612; p) B. C. Ranu, A.
Saha, R. Jana, Adv. Synth. Catal. 2007, 349, 2690–2696; q) A. Correa, M.
Carril, C. Bolm, Angew. Chem. Int. Ed. 2008, 47, 2880–2883; Angew. Chem.
2008, 120, 2922–2925; r) S. Bhadra, B. Sreedhar, B. C. Ranu, Adv. Synth.
Catal. 2009, 351, 2369–2378; s) M. A. Fernández-Rodríguez, J. F. Hartwig,
J. Org. Chem. 2009, 74, 1663–1672; t) C. C. Eichman, J. P. Stambuli, J. Org.
Chem. 2009, 74, 4005–4008; u) X. Ku, H. Huang, H. Jiang, H. Liu, J. Comb.
Chem. 2009, 11, 338–340; v) J. She, Z. Jiang, Y. Wang, Tetrahedron Lett.
2009, 50, 593–596; w) V. P. Reddy, K. Swapna, A. V. Kumar, K. R. Rao, J.
Org. Chem. 2009, 74, 3189–3191; x) V. P. Reddy, A. V. Kumar, K. Swapna,
K. R. Rao, Org. Lett. 2009, 11, 1697–1700; y) J.-R. Wu, C.-H. Liu, C.-F. Lee,
Chem. Commun. 2009, 4450–4452; z) S. Kovács, Z. Novák, Org. Biomol.
Chem. 2011, 9, 711–716.
lution. The aqueous layer was extracted with AcOEt (10 mL), and
the organic phase was dried with anhydrous Na2SO4, filtered, and
concentrated under reduced pressure to afford the corresponding
methyl ester.
General Procedure for the Synthesis of Phenyl Esters: A carb-
oxylic acid (5 mmol), phenol (5.0 mmol, 4.7 × 102 mg), 4-(dimethyl-
amino)pyridine (5.0 mmol, 7.6 × 10 mg), and a magnetic stir bar
were successively added to distilled 1,2-dichloromethane. N,N′-Di-
cyclohexylcarbodiimide (5.0 mmol, 1.0 × 103 mg) was added, and
the solution was stirred at 0 °C to room temperature overnight.
Upon completion of the reaction, the mixture was filtered, and the
filtrate was then concentrated under reduced pressure. The crude
product was purified by silica gel column chromatography (hexane/
AcOEt, 9:1) to afford the corresponding phenyl ester.
Synthesis of the O,S-Acetal [Methoxy(p-tolylthio)methyl]benz-
ene: To freshly distilled toluene (0.5 mL) in a screw-capped vial
under N2 were successively added a magnetic stirrer bar, LiBr
(0.40 mmol, 3.5 × 10 mg), benzaldehyde dimethyl acetal (2.0 mmol,
3.0 × 102 mg), and p-toluenethiol (2.6 mmol, 3.2 × 102 mg). The
contents of the vial were stirred at room temperature for 25 h. Upon
completion of the reaction, the solution was neutralized with an
aqueous NaOH solution. The aqueous layer was extracted with
AcOEt (10 mL), and the organic phase was dried with anhydrous
Na2SO4, filtered, and concentrated under reduced pressure. The
crude product was purified by silica gel column chromatography
(hexane/AcOEt, 99:1) to give the corresponding O,S-acetal, [meth-
oxy(p-tolylthio)methyl]benzene. 1H NMR (500.2 MHz, CDCl3): δ =
2.30 (s, 3 H), 3.51 (s, 3 H), 5.65 (s, 1 H), 7.03 (d, J = 8.0 Hz, 2 H),
7.22–7.27 (m, 7 H) ppm. 13C NMR (125.8 MHz, CDCl3): δ = 21.1, 56.5,
91.4, 126.2, 127.8, 128.0, 129.1, 129.4, 134.1, 137.9, 139.4 ppm.
HRMS (EI): calcd. for C14H13S [M – CH3O]+ 213.0738; found 213.0746.
Acknowledgments
This work was partially supported by a Grant-in-Aid for Scien-
tific Research (C) from the Ministry of Education, Culture, Sports,
Science and Technology (MEXT) (no. 25410120). We deeply
thank Shin-Etsu Chemical Co., Ltd. for a gift of hydrosilanes.
Keywords: Synthetic methods · Carboxylic acids · Sulfur ·
Indium · Silanes
[1] a) R. L. Beard, D. F. Colon, T. K. Song, P. A. Davies, D. M. Kochhar, R. S.
Chandraratna, J. Med. Chem. 1996, 39, 3556–3563; b) S. W. Kaldor, V. J.
Kalish, J. F. Davies, B. V. Shetty, J. E. Fritz, K. Appelt, J. A. Burgess, K. M.
Campanale, N. Y. Chirgadze, D. K. Clawson, B. A. Dressman, S. D. Hatch,
D. A. Khalil, M. B. Kosa, P. P. Lubbehusen, M. A. Muesing, A. K. Patick, S. H.
Reich, K. S. Su, J. H. Tatlock, J. Med. Chem. 1997, 40, 3979–3985; c) G. Liu,
J. T. Link, Z. Pei, E. B. Reilly, S. Leitza, B. Nguyen, K. C. Marsh, G. F. Okasin-
ski, T. W. von Geldern, M. Ormes, K. Fowler, M. Gallatin, J. Med. Chem.
2000, 43, 4025–4040; d) G. Liu, J. R. Huth, E. T. Olejniczak, R. Mendoza,
P. DeVries, S. Leitza, E. B. Reilly, G. F. Okasinski, S. W. Fesik, T. W. von Geld-
ern, J. Med. Chem. 2001, 44, 1202–1210; e) P. Johannesson, G. Lindeberg,
A. Johansson, G. V. Nikiforovich, A. Gogoll, B. Synnergren, M. Le Grèves,
F. Nyberg, A. Karlén, A. Hallberg, J. Med. Chem. 2002, 45, 1767–1777; f)
G. De Martino, M. C. Edler, G. La Regina, A. Coluccia, M. C. Barbera, D.
Barrow, R. I. Nicholson, G. Chiosis, A. Brancale, E. Hamel, M. Artico, R.
Silvestri, J. Med. Chem. 2006, 49, 947–954.
[5] a) K. Griesbaum, Angew. Chem. Int. Ed. Engl. 1970, 9, 273–287; Angew.
Chem. 1970, 82, 276–290; b) T. Mukaiyama, T. Izawa, K. Saigo, H. Takei,
Chem. Lett. 1973, 2, 355–356; c) C. G. Screttas, M. Micha-Screttas, J. Org.
Chem. 1979, 44, 713–719; d) P. Kumar, P. K. Pandey, V. R. Hegde, Synlett
1999, 1921–1922; e) S. Kanagasabapathy, A. Sudalai, B. C. Benicewicz,
Tetrahedron Lett. 2001, 42, 3791–3794; f) E. V. Sirazieva, V. A. Startseva,
L. E. Nikitina, V. V. Plemenkov, V. V. Klochkov, B. I. Khairutdinov, Chem.
Nat. Compd. 2004, 40, 478–481; g) C. Brouwer, R. Rahaman, C. He, Synlett
2007, 1785–1789; h) B. C. Ranu, T. Mandal, Synlett 2007, 925–928; i) S. A.
Delp, C. Munro-Leighton, L. A. Goj, M. A. Ramírez, T. B. Gunnoe, J. L.
Petersen, P. D. Boyle, Inorg. Chem. 2007, 46, 2365–2367; j) C. Rissing, D. Y.
Son, Organometallics 2008, 27, 5394–5397; k) B. Movassagh, M. Navidi,
ARKIVOC (Gainesville, FL, U.S.) 2008, 47–53; l) C. C. Silveira, S. R. Mendes,
F. M. Líbero, Synlett 2010, 790–792; m) S. Banerjee, J. Das, S. Santra,
Tetrahedron Lett. 2009, 50, 124–127; n) E. D. Goddard-Borger, M. B. Tro-
pak, S. Yonekawa, C. Tysoe, D. J. Mahuran, S. G. Withers, J. Med. Chem.
[2] a) I. V. Koval', Russ. J. Org. Chem. 2007, 43, 319–346; b) I. P. Beletskaya,
V. P. Ananikov, Chem. Rev. 2011, 111, 1596–1636; c) R. Castarlenas, A.
Di Giuseppe, J. J. Pérez-Torrente, L. A. Oro, Angew. Chem. Int. Ed. 2013,
52, 211–222; Angew. Chem. 2013, 125, 223–234.
Eur. J. Org. Chem. 2016, 1043–1049
1048
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim