10.1002/chem.201804244
Chemistry - A European Journal
COMMUNICATION
contrast to cross-coupling-based strategies, our approach
involves the direct activation of otherwise inert C−H bonds
without the need for tedious prefunctionalizations. The identified
compounds are low molecular weight inhibitors of HSP90
featuring a novel, and so far underappreciated, scaffold. Our
computational studies provide a model that not only rationalizes
the distinct activities of the various compounds, but provides
novel guidance for structural modifications aimed to further lead
development.
Figure 3. 3D and 2D best binding pose of compound 3b (green) in complex
with NTD of Hsp90. In the 2D representation, amino acids are colored
according to hydrophobicity, charge, and polarity (Gray- GLY, dark green-
hydrophobic, cyan- polar uncharged, blue – positives, red – negatives). Yellow
dashed lines represent H-bond interactions.
Acknowledgements
Generous support by the Regione Lombardia
- Cariplo
Foundation: avviso congiunto per l'incremento dell'attrattività del
sistema ricerca lombardo e della competitività dei ricercatori
candidati su strumenti ERC – edizione 2015 (2015-0014). GC
thanks AIRC (Associazione Italiana Ricerca sul Cancro) for
support through grant IG 20019.
In the most represented binding pose, compound 2i overlaps
almost perfectly with compound 3b. The N2 and N4 atoms of the
triazole ring are able to establish HB interactions with LYS58
and ASN51, and the benzene ring accommodates in
hydrophobic pocket A as observed for compound 3b, however
compound 2i lacks of the possibility of establishing any
interactions with ASP93 and THR184 (Figure S-4). The binding
pose of compound 3a is slightly different compared to the
binding mode of compound 3b. In particular, compound 3a is
rotated in the binding site so that the carboxyl group in the
azepine ring still engages in HB to THR184, but the benzyl
group accommodates more deeply in the hydrophobic pocket
compared to the benzene ring of compound 3b. The N2 and N4
atoms of the triazole ring can establish HB interactions with
LYS58 and GLY97 (Figure S-5). Compound 3c shows a very
similar binding mode to compound 3a. The N2 atom of the
triazole ring can establish a HB interaction with LYS58, while the
carbonyl group of the azepine ring can bind residue THR184.
The entire scaffold is slightly shifted in respect to compound 3a,
and this shift orients the methyl group in the azepine ring
towards the hydrophobic pocket A. However, this group cannot
accommodate inside pocket A, unlike the long benzyl group of
compound 3a (see Figure S-6). Compound 2h flips the triazole
ring which engages a HB interaction with THR184 and improves
the hydrophobic interaction with pocket A through its benzene
rings; moreover, one of the benzene rings can reach residue
PHE138, with whom it establishes a ꢀ, ꢀ-stacking interaction
(see Figure S-7). Compound 2b still establishes a HB interaction
with THR184 with the triazole ring, while it points the azepine
ring toward the hydrophobic pocket A and it rotates the order to
orient the dioxolane ring into a polar cavity (see Figure S-8).
From this analysis the interactions that appear to foster binding
are the H bonds with ASP93 and THR184 (see the comparison
between 2i and 2b).
Keywords: C-H arylation • HSP90 • Inhibitors • benzazepines •
docking analysis.
[1]
a) S. Kasparek, in Advances in Heterocyclic Chemistry; A. R. Katritzky;
A. J. Boulton, Eds.; Academic Press: New York, 1974, 45; b) R. W.
Fuller, B. B. Molloy, S. K. Hemrick, Biochem. Pharmacol. 1979, 28,
528-530; c) E. J. Trybulski, L. Benjamin, S. Vitone, A. Walser, R. I.
Fryer, J. Med. Chem. 1983, 26, 367-372; d) E. J. Trybulski, R. I. Fryer,
E. Reeder, A. Walser, J. Blount, J. Med. Chem. 1983, 26, 1596-1601.
a) K. Ikegashira, T. Oka, S. Hirashima, S. Noji, H. Yamanaka, Y. Hara,
T. Adachi, J-I. Tsuruha, S. Doi, Y. Hase, T. Noguchi, I. Ando, N. Ogura,
S. Ikeda, H. Hashimoto, J. Med. Chem. 2006, 49, 6950-6953; b) B. Z.
Zheng, S. V. D’Andrea, U. Hanumegowda, J. O. Knipe, K. Mosure, X.
Zhuo, J. A. Lemm, M. Liu, K. L. Rigat, Y-K. Wangd, H. Fang, C.
[2]
Poronsky, J. Cutrone, D. R. Wu, P.
N. Arunachalam, T. J.
Balapragalathan, A. Arumugam, A. Mathur, N. A. Meanwell, M. Gao, S.
B. Roberts, J. F. Kadow, Bioorg. Med. Chem. Lett. 2017, 27, 3294-
3300; c) A. Kornienko, A. Evidente, Chem. Rev. 2008, 108, 1982-2014;
d) Z. Jin, Nat. Prod. Rep. 2009, 26, 363-381; d) S. T. Staben, C.
Ndubaku, N. Blaquiere, M. Belvin, R. J. Bull, D. Dudley, K. Edgar, D.
Gray, R. Heald, T. P. Heffron, G. E. Jones, M. Jones, A. Kolesnikov, L.
Lee, J. Lesnick, C. Lewis, J. Murray, N. J. McLean, J. Nonomiya, A G.
Olivero, R. Ord, J. Pang, S. Price, W. W. Prior, L. Rouge, L. Salphati, D.
Sampath, J. Wallin, L. Wang, B. Wei, C. Weismann, P. Wu, Bioorg.
Med. Chem. Lett. 2013, 23, 2606-2613; e) M. He, C. Qu, O. Gao, X. Hu,
X. Hong, RSC Adv. 2015, 5, 16562-16574; f) M. Ghavre, J. Froese, M.
Pour, T. Hudlicky, Angew. Chem. Int. Ed. 2016, 55, 5642-5691.
[3]
[4]
a) L. Neckers P. Workman, Clin. Cancer Res. 2012, 18, 64–76; b) V.
Jeso, S. Iqbal, P. Hernandez, M. D.Cameron, H. Park, P V. LoGrasso,
G. C. Micalizio, Angew. Chem. Int. Ed. 2013, 52, 4800-4804.
a) H. Wang, M. Lu, M. Yao, W. Zhu, Molecular And Clinical Oncology
2016, 5, 326-334; b) S. C. Stiegler, M. Rübbelke, V. S. Korotkov, M.
Weiwad, C. John, G. Fischer, S. A. Sieber, M. Sattler, J. Buchner, J.
Biol. Chem. 2017, 292, 17073-17083; c) L-D. Shao, J. Su, B. Ye, J-X.
Liu, Z-L. Zuo, Y. Li, Y-Y. Wang, C. Xia, Q-S. Zhao J. Med. Chem. 2017,
60, 9053-9066; d) L. K. Forsberg, W. Liu, J. Holzbeierlein, B. S. J.
Blagg, Bioorganic & Med. Chem. 2017, 27, 4514-4519.
In summary, we have reported on an unprecedented palladium-
catalyzed C−H activation strategy to provide step-economical
access to
a heterocyclic fused 2-benzazepine. The C−H
arylation strategy is characterized by low catalyst loading, a mild
base and ample substrate scope towards various azepines,
benzoxazepines, thiazepines, and even benzodiazepines. In
[5]
For selected examples, see: a) M. Bauer, W. Wang, M. M. Lorion, C.
Dong, L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 203-207; b) X.
Tian, F. Yang, D. Rasina, M. Bauer, S. Warratz, F. Ferlin, L. Vaccaro, L.
Ackermann, Chem. Commun. 2016, 52, 9777-9780. c) L. Ackermann, A.
This article is protected by copyright. All rights reserved.